Введение к работе
Актуальность темы.
Во многих областях техники все чаще приходится решать задачи, связанные с нахождением температурных напряжений неоднородных тел. Это связано с широким внедрением неоднородных материалов в области техники, где раньше широко использовались слоистые композиты: обшивка космических кораблей и сверхзвуковых самолетов, покрытия лопастей газовых турбин и режущих инструментов станков и т.д. Благодаря непрерывному изменению материальных свойств в функционально-градиентных материалах удается избежать концентрации напряжений в отличие от слоистых композитов, которым присуща концентрация напряжений в местах соединения слоев.
Термомеханические расчеты обычно проводят на основе моделей линейной
термоупругости. При этом начальным этапом при использовании моделей
линейной термоупругости с неоднородными характеристиками является
определение точных законов неоднородности, от знания которых зависит
эффективность применения неоднородных материалов. Для однородных тел
термомеханические характеристики определялись из простых
макроэкспериментов и для многих материалов были составлены обширные таблицы. В случае неоднородных тел прямые измерения термомеханических характеристик невозможны, поскольку они представляют собой некоторые функции координат. Нахождение термомеханических характеристик неоднородных тел представляет собой коэффициентную обратную задачу.
Обратные задачи о нахождении переменных коэффициентов дифференциальных уравнений теплопроводности и теории упругости в отдельности изучены достаточно хорошо, однако для ряда новых материалов необходимо учитывать связанность тепловых и механических полей и решать обратные задачи термоупругости.
В случае обратных задач термоупругости ранее проведенные исследования ограничивались только нахождением термомеханических характеристик
слоистых тел, слабо неоднородных материалов и неоднородного полупространства.
Проведенный анализ литературы по коэффициентным обратным задачам термоупругости свидетельствует об актуальности и практической значимости дальнейшей разработки методов идентификации неоднородных характеристик термоупругих тел конечных размеров.
Цель работы заключается в постановках, разработке методов решения одномерных коэффициентных обратных задач связанной термоупругости, выводе операторных соотношений, связывающих искомые и измеряемые функции, проведении вычислительных экспериментов.
Методика исследований прямых задач термоупругости для неоднородного стержня основана на сведении задачи к системе интегральных уравнений Фредгольма 2-го рода в трансформантах по Лапласу, ее решении на основе метода коллокаций и численном обращении полученного решения на основе теории вычетов. Представлены две постановки обратных задач: в трансформантах и оригиналах. В случае постановки обратных задач в трансформантах для их решения сформулирован итерационный процесс, получены интегральные уравнения Фредгольма 1-го рода для определения поправок. Аналогично рассмотрены схемы для решения обратных задач в оригиналах. Представлено также решение задачи об одновременной реконструкции двух термомеханических характеристик. Интегральные уравнения Фредгольма 1-го рода решены на основании метода регуляризации Тихонова А.Н.
Научная новизна диссертационной работы заключена в разработке нового подхода к идентификации термомеханических характеристик неоднородных тел конечных размеров.
Достоверность полученных результатов основана на строгом математическом аппарате динамических задач термоупругости, на корректном сведении краевых задач для неоднородного термоупругого стержня к системе интегральных уравнений Фредгольма 2-го рода в трансформантах, ее решении
методом коллокаций, обращении трансформант на основе теории вычетов, сравнении приближенных результатов с известными точными решениями прямых и обратных задач термоупругости.
Практическая ценность. Результаты диссертации могут быть использованы при разработке технологии неразрушающего контроля и идентификации термомеханических характеристик функционально-градиентных материалов.
Апробация работы. Результаты, полученные в диссертации,
докладывались на III, IV, VI, VII, VIII Всероссийских школах-семинарах «Математическое моделирование и биомеханика в современном университете» (Дивноморское, 2007, 2008, 2011, 2012, 2013 гг.), на Международной научной конференции «Современные проблемы математики, механики, информатики» (Тула, 2010 г.), на X Всероссийском съезде по фундаментальным проблемам теоретической и прикладной механики (Нижний Новгород, 2011 г.), на Международной научной конференции, посвященной 80-летию со дня рождения академика Лаврентьева М.М. «Обратные и некорректные задачи математической физики» (Новосибирск, 2012 г.), на XIII, XV, XVI Международных конференциях «Современные проблемы механики сплошной среды» (Ростов-на-Дону, 2009, 2011, 2012 гг.), на семинарах кафедры теории упругости ЮФУ.
Публикации и вклад автора. По теме диссертации опубликовано 19 работ. Из них статьи [4, 6, 10, 11, 17] опубликованы в журналах из «Перечня ведущих рецензируемых научных журналов и изданий, в которых должны быть опубликованы основные научные результаты диссертации на соискание ученой степени доктора и кандидата наук», утвержденного ВАК РФ. Работы [4, 6, 10, 17] выполнены в соавторстве с научным руководителем - Ватульяном А.О., в которых Ватульяну А.О. принадлежит постановка задач, основные идеи по методам исследования, обсуждение результатов, Нестерову С.А. принадлежит формулировка операторных уравнений, их исследование и построение решений
краевых задач, численные расчеты для различных законов изменения неоднородных характеристик. Работа [11] выполнена автором самостоятельно.
Структура и объем работы. Диссертационная работа состоит из введения, четырех глав, заключения, списка литературы из 117 наименований, включает 45 рисунков и 7 таблиц общим объемом 104 страницы машинописного текста.
Работа выполнена при финансовой поддержке РФФИ (гранты № 10-01-00194-а и 13-1-00196).