Содержание к диссертации
Введение
ГЛАВА I. ТЕОРЕТИЧЕСКИЕ АСПЕКТЫ ОПРЕДЕЛЕНИЯ И РЕАЛИЗАЦИИ МЕТОДИЧЕСКИХ ОСОБЕННОСТЕЙ ПРЕПОДАВАНИЯ ЭЛЕКТИВНОГО КУРСА «ЭЛЕМЕНТЫ ТЕОРИИ ВЕРОЯТНОСТЕЙ» В СТАРШИХ КЛАССАХ ОБЩЕОБРАЗОВАТЕЛЬНОЙ ШКОЛЫ
1.1. Роль и место элективных курсов в системе школьного математического образования
1.2. Теория вероятностей как наука и учебный предмет 20
1.3. Особенности использования компетентностного и технологического подходов как основы проектирования элективного курса «Элементы теории вероятностей» для старшеклассников
1.4. Методические особенности преподавания элективного курса «Элементы теории вероятностей», направленного на развитие ключевых и предметных компетенций учащихся старших классов
1.5 Выводы к главе 1 53
ГЛАВА II. ОСНОВНЫЕ ВОПРОСЫ ПРОЕКТИРОВАНИЯ И РЕАЛИЗАЦИИ ЭЛЕКТИВНОГО КУРСА «ЭЛЕМЕНТЫ ТЕОРИИ ВЕРОЯТНОСТЕЙ» НА ОСНОВЕ КОМПЕТЕНТНОСТНОГО И ТЕХНОЛОГИЧЕСКОГО ПОДХОДОВ
2.1. Содержание образовательной области «Теория вероятностей» и ее возможности в формировании ключевых компетенций школьников
2.2. Разработка учебно - методического комплекса элективного курса «Элементы
теории вероятностей», обеспечивающего формирование ключевых и предметных
компетенций
2.3. Экспериментальная проверка эффективности методико-технологического обеспечения элективного курса «Элементы теории вероятностей»
2.4. Выводы к главе II И2
Приложения
Библиография
- Роль и место элективных курсов в системе школьного математического образования
- Особенности использования компетентностного и технологического подходов как основы проектирования элективного курса «Элементы теории вероятностей» для старшеклассников
- Содержание образовательной области «Теория вероятностей» и ее возможности в формировании ключевых компетенций школьников
Введение к работе
Актуальность исследования. В условиях реализации концепции профильного обучения на старшей ступени общего образования необходимы дифференциация содержания обучения и обеспечение доступа к качественному образованию учащихся в соответствии с их способностями, индивидуальными склонностями и потребностями. Реализация концепции требует развития системы специализированной подготовки учащихся, с учетом индивидуализации обучения, отработки системы профилей, адекватных потребностям рынка труда.
Изменения, происходящие в современном обществе, требуют от его членов эффективного решения проблем, большинство из которых имеют стохастическую природу. Сегодня весь цикл естественных и социально - экономических наук строится и развивается па базе вероятностных законов, и без соответствующей подготовки невозможно адекватное восприятие и правильная интерпретация социальной, политической информации. В современном, постоянно меняющемся мире огромное число людей сталкивается в жизни с проблемами, которые в большинстве своем связаны с анализом влияния случайных факторов и требуют принятия решений в ситуациях, имеющих вероятностную основу. Необходимым условием творческой работы во многих областях человеческой деятельности стало наличие стохастических знаний и представлений. Компетенции в области комбинаторики, теории вероятностей и математической статистики становятся неотъемлемым условием социализации.
Выделение и учет методических особенностей обучения элементам теории вероятностей в рамках элективного курса позволили бы в более полной мере решать проблемы, связанные с совершенствованием прикладной направленности общего математического образования. Например, проблему формирования многоуровнего содержания элективного курса с учетом дифференциации в интересах, потребностях, а также возможностях учащихся. Что к настоящему времени в педагогической науке в должной степени не разработано.
Вопросы использования некоторых элементов теории вероятностей в школьном курсе математики, в содержании учебных пособий и методических рекомендациях для учителей математики, дидактических материалах, рассматривались в работах P.M. Асланова, В.В. Афанасьева, И.И. Баврина, В.А. Болотюк, В.А. Булычева, Е.А. Бупимовича, Л.О. Бычковой, Н.Я Вилеикина, АЛ. Дограшвили, Н.Б. Истомины-Кастровской, А.Н. Колмогорова, К.Н. Курындиной, Г.Л. Луканкипа, В.М. Монахова, А.Г. Мордковича, А. Плоцки, А.А. Русакова, С.А. Самсоновой, В.Д.Селютина, Е.И. Смирнова, О.Н. Троицкой, Ю.Н. Тюрина, В.В. Фирсова, СВ. Щербатых и др. Вместе с тем следует отметить, что процедура проектирования элективного курса «Элементы теории вероятностей», отвечающего современным запросам действительности и раскрывающего многоуровневое разностороннее применение математического аппарата, рассмотрена в перечисленных работах не в полной мере, как в содержательном, так и в организационном плане.
Не смотря на то, что с 2003-2004 учебного года элементы теории вероятностей включены в государственный образовательный стандарт школы,
проведенные нами исследования показали дефицит ключевых компетенций учащихся в области теории вероятностей. К настоящему времени многие учащиеся старших классов не имеют должной математической подготовки по решению вероятностно-статистических задач. Этот факт подтверждается общероссийскими статистическими данными по выполнению соответствующих заданий ГИА по математике (диагностические работы 2010 года). Среди причин сложившейся ситуации в профильном обучении старшеклассников в рассматриваемом контексте можно назвать: отсутствие разработок многоуровнего содержания элективного курса и недостаток соответствующих учебно-методических средств, пригодных для обучения учащихся разных профилей.
Отбор содержания для элективного курса по теории вероятностей должен способствовать достижению учащимися необходимого в современном обществе уровня математической, в частности вероятностной (стохастической) культуры.
В условиях реализации профильного обучения многие учителя оказались не в полной мере готовы грамотно реализовывать вероятностно-статистическую линию школьного курса математики, тем более преподавать элективные курсы. Становится актуальным определение методических особенностей преподавания элективного курса по теории вероятностей.
Вытекающая из вышесказанного проблема исследования состоит в решении ряда противоречий между:
образовательным потенциалом теории вероятностей и явной недостаточностью его использования в процессе преподавания элективных курсов в старших классах общеобразовательной школы;
низким уровнем развития знаний выпускников школы в области теории вероятностей и социальным заказом общества, государственными требованиями к этому уровню;
отсутствием разработок по проектированию многоуровневого содержания элективного курса по теории вероятностей и их востребованностью;
содержанием учебных программ для основной школы и содержанием программ элективных курсов для старшей ступени школы (отсутствие преемственности, слабый учет методических особенностей и условий их реализации).
Проблема исследования заключается в определении методических особенностей элективного курса «Элементы теории вероятностей» для учащихся старших классов общеобразовательной школы.
Объект исследования: учебный процесс на элективном курсе по теории вероятностей в старшей школе.
Предмет исследования: содержание и методические особенности элективного курса «Элементы теории вероятностей» для учащихся старших классов.
Цель исследования: определение методических особенностей элективного курса «Элементы теории вероятностей», позволяющих развивать ключевые и предметные компетенции учащихся.
Гипотеза исследования: проектирование трехуровневого содержания элективного курса «Элементы теории вероятностей» на старшей ступени общего
образования будет способствовать созданию условий для более эффективного развития ключевых и предметных компетенций учащихся, если:
-
будут выделены и учтены методические особенности обучения старшеклассников элементам теории вероятностей,
-
будет создана процедурная схема, предполагающая разработку уровнего содержания обучения для предоставления обучающимся возможности выбора уровня его изучения.
Цель и гипотеза определили следующие задачи исследования:
-
В ходе анализа психолого-иедагогической, математической и методической литературы определить роль теории вероятностей в системе подготовки учащихся старших классов и ключевые компетенции, которые можно развивать у старшеклассников через ее содержание.
-
В процессе обобще/шя педагогической практики и опыта работы определить методические особенности элективного курса «Элементы теории вероятностей», позволяющие демонстрировать учащимся роль теории вероятностей и развивать их ключевые и предметные компетенции.
-
Предложить и внедрить схему проектирования элективного курса «Элементы теории вероятностей», реализующую выявленные методические особенности.
-
В процессе экспериментальной работы проверить эффективность созданного элективного курса «Элементы теории вероятностей» и его методического обеспечения.
Теоретике — методологическую основу исследования составляют:
компетентностный подход в образовании (В.А. Болотов, И.А. Зимняя, В.В. Сериков, А.И. Субстто, В. Хутмахср, А.В. Хуторской);
концепция технологического подхода в образовании и теория педагогических технологий (В.П. Беспалько, Е.С. Заир - Бек, И.А. Колесникова, В.М. Монахов, В.Е. Радионов, Т.К. Смыковская, В.М. Шсиель);
задачный подход к обучению (Г.И. Балл, Ю.М. Колягин, Д. Пойа, В.Н. Симонов, Г.И Саранцев, Л.М. Фридман и др.);
работы по проблемам прикладной и практической направленности математического образования, в том числе связанные и изучением теории вероятностей (P.M. Асланов, Е.С. Вентцель, Б.В. Гнедснко, В.А. Далингср, Г.Л. Луканкин, А.Г. Мордкович, В.В. Пикап, А.А. Русаков, Н.А. Тсрешин, В.В. Фирсов, и др.);
научно - методические работы, посвященные проектированию и созданию факультативных и элективных курсов (Н.Н. Авдеева, Н.Я. Виленкин, А.Н. Земляков, B.C. Лютикас, В.В.Орлов, И.М. Смирнова, Н.Л. Стефанова, Я.Ю. Сухова, Т.В. Черникова и др.).
При решении поставленных задач были использованы следующие методы исследования: теоретический анализ и систематизация данных философской, психолого-иедагогической, методической и математической литературы по теме исследования, а также нормативных документов в сфере образования, анализ содержания учебных программ элективных курсов, учебников, пособий и
практики обучения теории вероятностей старшеклассников; теоретическое моделирование; эмпирическое исследование (наблюдение, мониторинг, собеседование, тестирование, анкетирование); экспериментальное обучение; обработка и анализ результатов проведенного педагогического эксперимента.
Научная новизна исследования заключается в том, что определены методические особенности элективного курса «Элементы теории вероятностей» и создана процедурная схема проектирования элективного курса с целью последовательной реализации выделенных методических особенностей.
Теоретическая значимость результатов исследования обусловлена его вкладом в развитие теории и методики обучения математики - представленная в исследовании последовательность операций по проектированию элективного курса является теоретической основой для создания аналогичных курсов по другим образовательным областям. Она позволяет по новому строить целевой, содержательный и процессуальный компоненты элективного курса «Элементы теории вероятностей».
Практическая значимость исследования состоит в:
разработке трехуровнего содержания элективного курса «Элементы теории вероятностей», представленного через: тезаурус; систему микроцелей (задание учебного процесса на языке учебной математической деятельности), определяющую развитие ключевых компетенций,
создании методико-технологического обеспечения элективного курса «Элементы теории вероятностей», с учетом выделенных методических особенностей его преподавания, включающего: систему методических рекомендаций; трехуровневую учебную программу; атлас технологических карт; систему упражнений; систему диагностик; систему коррекциониых действий по устранению типовых ошибок учащихся; атлас информационных карт уроков; эталоны решения прикладных задач социально-экономического содержания; рекомендации по подготовке и тематику докладов и рефератов.
Материалы исследования могут быть использованы учителями математики и методистами в профессионально-педагогической деятельности, преподавателями ВУЗов при подготовке будущих учителей математики. Основные идеи исследования легли в основу созданного учебного пособия «Стохастическая линия школьного курса математики: комбинаторика, теория вероятностей и частная методика».
Достоверность и обоснованность результатов исследования обеспечиваются методологическим инструментарием исследования, адекватным его целям, предмету и задачам, совпадением выводов теоретического анализа проблемы исследования с результатами педагогического эксперимента и их статистической обработкой.
Основные положения, выносимые на защиту:
-
Целостная система методических особенностей элективного курса «Элементы теории вероятностей» для учащихся старших классов.
-
Использование педагогических технологий как инструментальной основы реализации компетентностного подхода позволяет создать элективный курс, спроектировать компоненты трехуровневой методической системы
(целевой, содержательный и процессуальный), наиболее полно учитывающую все выделенные методические особенности.
3. Предложенная и обоснованная процедурная схема проектирования элективных курсов способствует развитию системы профильного образования. Схема включает 9 процедур последовательной реализации трех этапов -подготовительного, этапа конструирования и оценочного этапа.
Организация и основные этапы исследования.
Работа в рамках эксперимента проводилась по трем направлениям: с учителями (в том числе с методическими объединениями учителей математики) школ города Москвы № 436, №1738 и ГОУ СПО г. Москвы Экономико-технологического колледжа №22; со студентами факультета точных наук и инновационных технологий МГГУ имени М.Л. Шолохова - будущими учителями математики и информатики; с преподавателями факультета точных наук и инновационных технологий (анкетирование, обобщение и систематизация педагогического опыта).
Исследование проводилось с 2005 по 2009 гг. и включало три этапа. На первом этапе (2005 - 2007 гг.) был проведен анализ психолого — педагогической, философской, методической и учебной литературы, констатирующий эксперимент. Результатом этой работы явилось уточнение проблемы исследования и выявление теоретических основ ее решения. На втором этапе (2007 - 2008 гг.) было предложен элективный курс «Элементы теории вероятностей» и разработано методическое обеспечение элективного курса, ориентированное на формирование ключевых компетенций учащихся старшей школы, с целью улучшения качества их математической подготовки и развития вероятностного мышления. На третьем этапе (2008-2009 гг.) в ходе эксперимента осуществлялась проверка эффективности элективного курса «Элементы теории вероятностей».
Апробация результатов исследования. Результаты исследования докладывались автором и обсуждались:
на методических объединениях дисциплин естественно - научного цикла в ГОУ СПО г. Москвы Экономике - технологическом колледже №22,
па заседании кафедры прикладной математики и информатики, кафедры методики обучения и педагогических технологий Московского государственного гуманитарного университета им. М.А. Шолохова,
в Современной гуманитарной академии на Всероссийской междисциплинарной конференции «Технологии индивидуализации обучения в вузе» (Москва, декабрь 2007);
в Российском университете дружбы народов на международной научной конференции «Наука в вузах: математика, физика, информатика. Проблемы высшего и среднего профессионального образования» (г. Москва, март 2009 г.),
в Московской финансово - юридической академии на Всероссийской научно-практической конференции «Математика, информатика, естествознание в экономике и обществе» (г. Москва, ноябрь 2009).
Опубликовано 15 работ по теме исследования.
Внедрение и использование результатов исследования. Материалы исследования успешно используются в учебном процессе в ГОУ СПО Экономико - технологическом колледже №22, школах города Москвы № 436 и № 1738, а также в ГОУ ВПО Московском государственном гуманитарном университете имени М.А. Шолохова на факультете точных наук и инновационных технологий при подготовке будущих учителей математики и информатики.
Структура и объем работы. Диссертация состоит из введения, двух глав, заключения, библиографического списка из 250 наименований и 3-х приложений. Общий объем работы составляет 150 страниц.
Роль и место элективных курсов в системе школьного математического образования
Изменения в структуре, содержании и организации образовательного процесса, предусматриваемые профильным обучением, позволяют более полно учитывать интересы, склонности и способности учащихся, создавать условия для обучения старшеклассников в соответствии с их профессиональными интересами и намерениями в отношении продолжения образования с учетом реальных потребностей рынка труда.
Анализ психолого-педагогической литературы показывает, что дифференциация обучения как общая педагогическая задача, не является новой ни для отечественной ни для зарубежной школы. Проблемам дифференцированного обучения математике посвящены работы педагогов: Бабанского Ю.К. [15], Кирсанова А.А. [99], Рабунского Е.С. [176], Скаткина Н.М., Унт И.Э. [228] и других; психологов: Выгодского С.Л., Гальперина П.Я. [56], Давыдова В.В., Крутецкого В.А. [118], Талызиной Н.Ф., Фридмана Л.М. [238] и других; методистов: Гусева В.А. [74], Капеносова А.Н. [97], Куприяновича В.В. [123], Метельского Н.В. [139], Слепкань З.И., Столяра А.А. [205] и других. Довольно много разработок в этой области принадлежит математикам Болтянскому В.Г. [30], Дорофееву Г.В. [77], Колягину Ю.М. [108] и другим.
Перечислим ряд условий, выполнение которых необходимо для успешного и эффективного осуществления уровневой дифференциации:
1) Добровольность в выборе уровня усвоения и отчетности.
2) Уровневый подход к требованиям обязательного минимума усвоения материала.
3) Обеспечение последовательности этапов в продвижении обучающегося по уровням.
4) Выделенные уровни усвоения материала, и в первую очередь обязательные результаты обучения, должны быть открытыми для учащихся.
5) Контроль должен отражать принятый уровневыи подход.
В 2002 году была принята новая Концепция профильного обучения на старшей ступени общего образования [114]. Одной из указанных целей перехода к профильному обучению является создание условий для существенной дифференциации содержания обучения старшеклассников с широкими и гибкими возможностями построения школьниками индивидуальных образовательных программ. С этой целью помимо профильных общеобразовательных предметов вводятся элективные курсы -это курсы по выбору учащихся, обязательные для посещения.
Сущность профильной дифференциации (дифференциации по содержанию) в том, что она предлагает обучение разных групп школьников по программам, отличающимся глубиной изложения материала, объемом сведений и даже номенклатурой включенных вопросов. В работах Г.В. Дорофеева, Л.В. Кузнецовой, СБ. Суворовой, В.В. Фирсова [235] высказывалась идея об осуществлении профильного обучения в рамках углубленного изучения математики, начиная с 8 класса.
Основные принципы профильной дифференциации:
1) Обучение по различным направлениям организуется лишь после того, как школьники получат единое базовое образование и утвердятся в своих склонностях.
2) На старшей ступени обучения необходимо обеспечить возможно большее количество направлений обучения или продолжения образования.
3) При составлении программ и учебников, в выборе форм и методов обучения следует учитывать возрастные особенности подростков, склонных к данному виду деятельности, и в то же время не исключать возможности изменить профиль обучения при ошибке в выборе.
4) Математика входит в перечень обязательных учебных предметов любого из профилей. Содержание и объем учебного материала по математике должны отражать специфику конкретного направления.
Основная идея обновления старшей ступени общего образования состоит в том, что образование здесь должно стать более индивидуализированным, функциональным и эффективным. Профильное обучение направлено на реализацию личностно-ориентированного учебного процесса, оно позволяет существенно расширить возможности выстраивания учеником индивидуальной образовательной траектории.
Профилизация обучения в старших классах соответствует структуре образовательных и жизненных установок большинства старшеклассников. Модель общеобразовательного учреждения с профильным обучением на старшей ступени предусматривает возможность разнообразных комбинаций учебных предметов, а также следующие типы учебных курсов: базовые общеобразовательные, профильные и элективные.
Базовые общеобразовательные курсы - курсы федерального компонента, направленные на завершение общеобразовательной подготовки школьников. Они являются обязательными для всех учащихся во всех профилях обучения.
Особенности использования компетентностного и технологического подходов как основы проектирования элективного курса «Элементы теории вероятностей» для старшеклассников
Долгое время Российская школа находилась на позициях «знаниевого» подхода, основной образовательной задачей считалось формирование у обучающихся прочных систематизированных знаний, а умения и навыки при этом рассматривались как второстепенные компоненты процесса обучения. Сегодня с развитием современных педагогических взглядов расстановка акцентов меняется. Разумеется, предметное знание при этом не исчезает из структуры образованности выпускника, но ему отводится подчиненная, ориентировочная роль.
В настоящее время «знаниевое» образование оказывается неэффективным и нецелесообразным, поскольку устаревание информации происходит очень быстро. Для восстановления равновесия между знаниями и жизнью цель образования следует сместить со знаний на интегральные деятельностно - практические умения - компетенции. Стремление сделать российское образование и выпускника пригодными для реалий рыночной экономики послужило предпосылкой разработки компетентностного подхода. Компетентностный подход возник из проблемы: учащиеся, хорошо излагающие теоретический материал, не могут применить полученные знания для решения конкретных практических задач.
Компетентностный подход получил распространение в отечественной педагогической науке сравнительно недавно. Он разработан В.А. Болотовым [28], ПЛ.Борисовым [31], Т.В.Ивановой [92], Г.Н. Подчалимовой [172], В.В.Сериковым, Б.Д. Элькониным и др. Компетентностный подход не отрицает значения знаний, а акцентирует внимание на способности их использовать. На первое место выдвигается не информированность обучающегося, а его способность применять информацию для решения различных практических проблем. Приведем особенности использования компетентностного и технологического подходов к проектированию элективного курса «Элементы теории вероятностей».
Цели обучения на элективном курсе представлены через ключевые и предметные компетенции. Цели образования описываются в терминах, отражающих новые возможности обучаемых, рост их личностного потенциала. Очевидно, что более значимыми и эффективными для дальнейшей успешной профессиональной деятельности выпускника являются не разрозненные знания, а умения, проявляющиеся в способности решать жизненно важные проблемы.
Компетентностный подход заложен в основу как реформ Сорбонско — Болонского процесса, так и принципов модернизации системы российского образования, возможности расширения содержания которого ограничены положениями ГОСов и фактически осуществляются за счет школьного компонента.
Образование, ориентированное на компетенции (competence - based education - СВЕ), сформировалось в 70-х годах в Америке в общем контексте предложенного Н. Хомским в 1965 году понятия «компетенция» применительно к теории языка, трансформационной грамматике [256]. Н. Хомский отметил, что «... мы проводим фундаментальное различие между компетенцией (знанием своего языка) и ее употреблением (использованием языка в конкретных ситуациях). Только в идеализированном случае ... употребление является непосредственным отражением компетенции». В действительности же оно не может непосредственно отражать компетенцию ...» [240]. Следует отметить, что «употребление» является проявлением компетенции как «скрытого», потенциального, оно, по Н. Хомскому, в действительности связано с мышлением и опытом человека. В то же время в 1959 году в работе Р. Уайта категория «компетенция» содержательно наполняется собственно личностными составляющими, включая мотивацию [259]. Следует различать категории «компетентность» и «компетені{ш», в 60-х годах прошлого века уже было заложено понимание рассматриваемых сейчас различий. В. Хутмахер в своем обобщающем докладе, констатирует, что само понятие компетенция содержательно до сих пор точно не определено. Однако все исследователи соглашаются с тем, что это понятие ближе к понятийному полю «знаю, как», чем к полю «знаю, что». Вслед за Н. Хомским, В. Хутмахер подчеркивает, «что употребление есть компетенция в действии ...» [255].
Содержание образовательной области «Теория вероятностей» и ее возможности в формировании ключевых компетенций школьников
Представим ключевые компетенции, формируемые в рамках элективного курса «Элементы теории вероятностей» на уровнях А, В, С.
Уровень А Учебно-познавательные компетенции: решать вероятностную задачу разными способами; работать с простейшими вероятностными моделями; определять вероятность события, используя аппарат комбинаторики. Изучаемые в элективном курсе формулы комбинаторики предоставляют учащимся решать самые разные типы вероятностных задач, в том числе повышенной сложности. Информационные компетенции: поиск необходимой информации по заданной учебной теме в источниках различного типа (учебная литература, электронные ресурсы, Internet); извлечение информации из таблиц и графиков; интерпретация полученного ответа при решении вероятностной задачи; проверка полученной информации через виртуальный эксперимент; развернутое обоснование суждения, приведение доказательств, примеров; составление компьютерных программ для вычисления числа различных видов соединений (профильные классы); использование информационных ресурсов в учебном процессе.
Кроме использования электронных ресурсов в рамках данного курса предлагается работа с основными определениями (тезаурусом) и правилами теории вероятностей. Обращаясь к различным источникам информации, учащийся составляет собственный словарь терминов. Сюда могут войти и цитаты, обязательным требованием в этой работе является указание ссылок на источники.
Использование электронного учебного пособия е учебном процессе. В рамках элективного курса с учащимися полезно провести лабораторную работу, посвященную проведению случайного эксперимента и обработкой полученных результатов. Используя специальное программное обеспечение (Бунимович Е.А., Булычев В.А. «Вероятность и статистика 5-9», электронное учебное пособие для 5-9 классов на CD-Rom М., Дрофа, 2003), позволяющее в считанные секунды смоделировать тысячи случайных экспериментов, учащиеся имеют возможность следить за динамикой изменения частот и приближением их к вероятностям случайных исходов и событий.
Исследовательские компетенции: разбивать задачу на подзадачи.
Коммуникативные компетенции: умение работать в группе, участвовать в реализации совместной выработки решения.
Уровень В Учебно-познавательные компетенции:
Умение решать вероятностную задачу разными способами и определять наиболее рациональный;
Систематизировать представления о вероятности события. Формирование универсального определения вероятности как числа, к которому приближается относительная частота случайного события в длинной серии опытов. В понимании учащихся вероятность становится универсальной количественной мерой возможности осуществления случайного события, а все частные формулы для ее подсчета служат лишь для вычисления этой меры в определенном круге ситуаций.
Перевод текста задачи на математический язык (язык вероятностной модели). В структуру компетенции входит: работа с символикой, словесное описание события, теоретико — множественное (формальное, строго математическое) его представление.
Применение (оперирование, выбор) вероятностной модели для решения учебной задачи. Дерево вариантов, урновая схема и игра в кости -модельные схемы, в которых возможно решение большинства вероятностных задач курса. Вероятностная модель - новый для учащихся способ отражения процессов реальности. Школьники должны понять, насколько мощный инструмент для вычисления вероятности они получили не столько в виде изученных правил и формул, сколько через понимание вероятностных моделей, алгоритмов решения вероятностных задач.
Информационные компетенции:
Извлечение информации из текстов, таблиц и графиков. Изучая темы «Геометрическая вероятность» и «диаграммы Эйлера-Венна» учащиеся имеют возможность поработать с графической информацией в рамках элективного курса по теории вероятностей.
Интерпретация полученного ответа при решении вероятностной задачи. Получив ответ, необходимо обсудить с учениками его реальный смысл. Полезно выяснить, совпадает ли полученная величина с интуитивными представлениями о вероятности, удовлетворяет ли основным свойствам.
Перевод информации с естественного языка на математический (проецирование). Например, формальное представление событий как множеств.
Передача содержания информации адекватно поставленной цели (сжато, полно, выборочно). Компетенция формируется через творческие работы учащихся: создание презентаций в программе Power Point на заданную тему.