Содержание к диссертации
Введение
Глава I. СОВРЕМЕННОЕ СОСТОЯНИЕ ПРОБЛЕМЫ ДИФФЕРЕНЦИРОВАННОГО ОБУЧЕНИЯ И ПОДГОТОВКИ УЧИТЕЛЯ МАТЕМАТИКИ К ЕГО ОСУЩЕСТВЛЕНИЮ 22
1.1. Результаты анализа методической подготовки будущих учителей математики к дифференцированному обучению учащихся средней школы 22
1.2. Дифференцированное обучение как средство достижения индивидуального подхода к учащимся 63
1.3. Индивидуальные особенности и их выбор при дифференцированном обучении учащихся 78
1.4. Возможности учета индивидуальных особенностей учащихся при дифференцированном обучении 113
Глава II.ТЕОРЕТИЧЕСКИЕ ОСНОВЫ МЕТОДИЧЕСКОЙ ПОДГОТОВКИ БУДУЩЕГО УЧИТЕЛЯ МАТЕМАТИКИ К ДИФФЕРЕНЦИРОВАННОМУ ОБУЧЕНИЮ УЧАЩИХСЯ СРЕДНЕЙ ШКОЛЫ 146
2.1. Концепция методической подготовки будущего учителя математики к дифференцированному обучению учащихся средней школы 146
2.2. Предметно-математические особенности учащихся как предмет содержания методической подготовки будущего учителя математики к дифференцированному обучению учащихся 158
2.2.1. Индивидуальные особенности ученика как субъекта учебной деятельности 159
2.2.2. Индивидуальны особенности учащихся и их учет при изучении компонентов содержания школьного курса математики 176
2.3.Цели методической подготовки будущих учителей математики к дифференцированному обучению учащихся средней школы 213
2.4. Содержание методической подготовки будущих учителей математики к дифференцированному обучению учащихся средней школы 242
2.5.Методы, формы и средства осуществления методической подготовки будущего учителя математики к дифференцированному обучению учащихся 266
Глава III.ОСУЩЕСТВЛЕНИЕ МЕТОДИЧЕСКОЙ ПОДГОТОВКИ БУДУЩЕГО УЧИТЕЛЯ МАТЕМАТИКИ К ДИФФЕРЕНЦИРОВАННОМУ ОБУЧЕНИЮ УЧАЩИХСЯ 296
3.1. Предметно-уровневая модель методической подготовки студентов педвузов к дифференцированному обучению учащихся математике 296
3.2. Практические занятия: особенности содержания и проведения 325
3.3. Дифференциально-методическая компетентность как результат методической подготовки будущего учителя математики к дифференцированному обучению учащихся 352
3.4. Результаты педагогического эксперимента 359
ЗАКЛЮЧЕНИЕ 383
ЛИТЕРАТУРА 396
Приложение 429
- Результаты анализа методической подготовки будущих учителей математики к дифференцированному обучению учащихся средней школы
- Концепция методической подготовки будущего учителя математики к дифференцированному обучению учащихся средней школы
- Предметно-уровневая модель методической подготовки студентов педвузов к дифференцированному обучению учащихся математике
Введение к работе
Изменения в социальной, экономической, культурной жизни общества влияют на систему образования. На необходимость обеспечивать "организацию учебного процесса с учетом современных достижений науки, систематическое обновление всех аспектов образования, отражающего изменения в сфере культуры, экономики, науки, техники и технологий" указано в проекте Национальной доктрины образования в Российской Федерации [226].
Демократические процессы, активно происходящие в России, нашли отражение в усилении внимания не только педагогической науки, но и практики обучения к личности ученика. Это выражается в активизации внедрения в практику обучения учащихся психолого-педагогических концепций и теорий (гуманизации образования, личностно-ориентированного обучения, развивающего обучения и др.), направленных на развитие индивидуальности ребенка.
Гуманизация образования предполагает его ориентацию на развитие человеческой личности, его направленность на конструирование содержания, форм и методов обучения и воспитания, обеспечивающих развитие индивидуальности каждого ученика, его познавательных процессов, личностных качеств. Гуманистическая дидактика направлена на создание комфортных условий для развития каждого. Другими словами, гуманизация образования несомненно предполагает максимально возможную индивидуализацию учебно-воспитательного процесса (М.Н.Берулава, А.А.Столяр).
Согласно теории личностно-ориентированного обучения ученик изначально является субъектом познания, носителем субъектного опыта, в содержание которого входят предметные представления, понятия; операции, приемы, правила выполнения действий (умственные, практические);
5 эмоциональные коды (личностные смыслы, установки, стереотипы).
Основная задача личностно-ориентированного обучения состоит в раскрытии
субъектных ценностей и формировании на этой основе общественного
значимых ценностей, основная задача учителя - в раскрытии содержания
субъектного опыта ученика и максимальной опоре на него при организации
обучения (И.СЯкиманская). Таким образом, личностноориентированное
обучение предусматривает по сути своей дифференцированный подход к
обучению с учетом уровня интеллектуального развития школьника, его
подготовки по данному предмету, его способностей, задатков (Е.С.Полат).
Следовательно, успешность реализации на практике личностно-
ориентированного обучения в большой степени зависит от умения учителя осуществлять дифференцированное обучение учащихся на основе учета их индивидуальных особенностей.
Вне зависимости от того, какие положения (система принципов Л.В.Занкова, закономерности формирования теоретического мышления, психологические аспекты содержания, структуры и этапов учебной деятельности и т.д.) составляют фундамент того или иного типа развивающего обучения, основным его назначением является развитие учащихся в обучении, что, очевидно, невозможно без учета индивидуальных особенностей последних.
Несмотря на существенные отличия между рассмотренными концепциями и теориями обучения, связанные как с их сущностью, так и с особенностями практической реализации, имеется ряд положений, объединяющих их. Во первых, как это отмечалось выше, положение о направленности каждой из теорий на развитие учащихся и, во-вторых, положение об учете индивидуальных особенностей учащихся как необходимом условии успешной реализации концепции гуманизации образования, теорий личностно-ориентированного и развивающего обучения.
6 Таким образом, проблема обучения учащихся на основе учета их
индивидуальных особенностей в настоящее время представляет актуальную
проблему, решение которой является одним из необходимых условий
успешного внедрения в практику обучения учащихся концепции гуманизации
образования и других психолого-педагогических теорий, приоритетной идеей
которых является идея развития личности ученика, его индивидуальности.
Несмотря на то, что в исследованиях В.А.Гусева, Г.Д.Глейзера, А.А.Кирсанова, Ю.М.Колягина, Н.В.Метельского, И.М.Смирновой, Е.С.Рабунского, И.Унт, Р.А.Утеевой и др. рассмотрены различные аспекты проблемы обучения учащихся на основе учета их индивидуальных особенностей, в массовой школьной практике результаты этих исследований не нашли должного применения. Этот факт свидетельствует о том, что учителя не владеют в достаточной мере знаниями и умениями, позволяющими осуществлять им такое обучение учащихся.
Таким образом, имеем противоречие между необходимостью активизации процесса внедрения в школьную практику современных психолого-педагогических теорий, ориентированных на развитие индивидуальности учащихся и базирующихся на идее учета их индивидуальных особенностей, и неподготовленностью учителей в этом направлении.
В профессионально-педагогической подготовке будущего учителя математики можно выделить три направления, в рамках которых может и должна осуществляться его подготовка к дифференцированному обучению учащихся математике. Это:
Психолого-педагогическая подготовка;
Предметно-математическая подготовка;
Методическая подготовка.
В соответствии с Государственным образовательным стандартом в рамках
психолого-педагогической подготовки при изучении общей, возрастной и
педагогической психологии студенты получают представление об
7
индивидуальных особенностях человека, о способах их диагностики
и возможностях учета. При изучении педагогики (теории обучения, теории
воспитания, педагогических технологий) они получают представление о
принципе индивидуального подхода к учащимся в обучении и воспитании,
рассматривают различные педагогические технологии, в том числе, связанные
с дифференциацией и индивидуализацией обучения. Знания, приобретенные
студентами в ходе психолого-педагогической подготовки, представляют
необходимое условие успешной их подготовки к обучению учащихся на основе
учета их индивидуальных особенностей, но обладания только ими не
достаточно для успешного осуществления этого процесса. Это в первую
очередь обусловлено той спецификой, которую в процесс обучения вносит
содержание конкретного учебного предмета.
Проблема профессионально-педагогической направленности предметно-
математической подготовки студентов рассматривалась в диссертационных
исследованиях В.В.Афанасьева, Н.И.Батькановой, Г.Л.Луканкина,
А.Г.Мордковича, Л.А.Пржевалинской, Г.Г.Хамова, Л.В.Шкериной и др.
Один из получивших широкое развитие подходов к профессионально-педагогической направленности обучения студентов математике связан с построением обучения студентов математическим дисциплинам на основе таких принципов, разработанных А.Г.Мордковичем, Н.И.Батькановой, Л.А.Пржевалинской, как принцип фундаментальности, бинарности, ведущей идеи, непрерывности, комплексного подхода, связи со школьным курсом математики. Анализ сущности каждого из этих принципов и возможностей их реализации при обучении студентов математике показывает недостаточную их ориентацию на подготовку будущего учителя к обучению учащихся математике на основе учета их индивидуальных особенгостей.
Л.В.Шкерина, решая проблему профессионально-ориентированной учебной деятельности студента - будущего учителя математики, выделяет такую ее составляющую как квазипрофессиональная учебная деятельность. В
рамках этой деятельности студенты должны, по-мнению автора, постигать не только суть математических объектов, но и их значение для будущей профессии учителя. Исходя из этого, к основным умениям, которые они должны при этом приобрести, Л.В.Шкерина относит умения по дидактическому анализу учебного материала, моделированию заданной учебной ситуации, моделированию школьного учебного занятия, анализу основных структурно-логических проблем школьного курса математики. Анализ данных положений показывает, что в рамках квазипрофессиональной учебной деятельности имеются возможности по формированию у студентов умений, необходимых для обучения учащихся математике на основе учета их индивидуальных особенностей. Однако этот аспект профессиональной подготовки будущего учителя математики в работе Л.В.Шкериной не рассматривается.
В исследованиях В.В.Афанасьева, Г.Г.Хамова также раскрытию данного аспекта подготовки не уделено должного внимания, хотя отдельные элементы имеют место. Так, одна из целей обучения алгебре и теории чисел, по мнению Г.Г.Хамова, состоит в том, чтобы студентам прививать умения формировать у учащихся положительный мотив учебной деятельности, рассматривать различные варианты изложения учебного материала. Кроме того, отмечается польза выполнения студентами заданий, связанных с самостоятельным составлением задач, аналогичных данным.
Анализ программ по различным математическим курсам показывает, что в них не отражена направленность на подготовку будущего учителя математики к дифференцированному обучению на основе учета индивидуальных особенностей учащихся.
Таким образом, в рамках предметно-математической подготовки студенты не овладевают в достаточной степени умениями, связанными с работой над математическим содержанием и необходимыми для обучения учащихся на основе учета их индивидуальных особенностей.
9 Исследования, в которых рассматриваются проблемы методической подготовки будущего учителя математики, с точки зрения их направленности на подготовку студентов к обучению учащихся на основе учета их индивидуальных особенностей, можно разделить на следующие группы:
Исследования (О.АИванов, В.Ф.Любичева, И.Е.Малова, Е.С. Петрова и др.), полностью посвященные методической подготовке будущего учителя математики, в которых практически не освещена проблема их подготовки к обучению на основе учета индивидуальных особенностей учащихся.
Исследования (В.АХусев, Е.В.Силаев, И.М.Смирнова, Р.А Утеева и др.), в которых достаточно детально разработаны такие отдельные аспекты изучаемой нами проблемы, как:
- подготовка к работе по формированию приемов мыслительной
деятельности учащихся;
работа, направленная на формирование у будущего учителя умений составлять дифференцированные задания;
формирование у учителя умении по конструированию различных видов помощи, оказываемой учащимся на основе учета их индивидуальных особенностей;
подготовка учителя к учету индивидуальных различий учащихся при преподавании стереометрического материала и т.д.
3. Исследования (И.М.Новик, Н.Л.Стефанова), в которых представлена
целостная система методической подготовки учителя математики, но такое ее
направление, как подготовка к учету индивидуальных особенностей,
разработано недостаточно полно.
Учебные пособия и книги по методике преподавания математики содержат материал, частично отражающий отдельные аспекты проблемы обучения учащихся на основе учета их индивидуальных особенностей. Однако в них не
10 представлен весь материал, овладение которым необходимо для подготовки учителя математики к осуществлению такого обучения учащихся.
Обобщая результаты анализа исследований, посвященных методической подготовке будущего учителя математики, можно сделать вывод, что такой важный на современном этапе ее аспект, как подготовка к обучению на основе учета индивидуальных особенностей учащихся, представлен не достаточно полно.
Таким образом, знания об индивидуальных особенностях учащихся, о возможностях их учета в обучении, о дифференцированном обучении, приобретенные студентами в рамках психолого-педагогической подготовки, не получают дальнейшего своего развития и закрепления в ходе математической и методической подготовок. Сказанное позволяет выявить противоречие между необходимостью подготовки будущего учителя математики к обучению учащихся на основе учета их индивидуальных особенностей и недостаточной направленностью современной методической подготовки к осуществлению такого обучения.
В настоящее время существует большое количество исследований по дифференциальной психологии, в которых получены глубокие результаты, связанные с изучением индивидуальных особенностей человека и возможностями их формирования. Это работы А.Анастази, М.К.Акимовой, Л.М.Беккера, Г.А.Берулавы, М.Н.Берулавы, Л.А.Венгера, Э.А.Голубевой, З.И.Калмыковой, Е.А.Климова, В.Т.Козловой, В.А.Крутецкого, А.Ф.Лазурс-кого, А.Н.Лентьева, Е.Н.Малкова, В.Д.Небылицына, С.Л.Рубинштейна, А.АСмирнова, Б.М.Теплова, М.А.Холодной, В.Д.Шадрикова, И.СЯкиманс-ской и др.
В психолого-педагогических и методических исследованиях
Г.Д.Глейзера, К.М.Гуревича, В.АГусева, Изюмовой С.А., Ю.М.Колягина,
А.АКирсанова, Ю.Н.Кулюткина, Е.С.Рабунского, И.М.Смирновой,
11 Г.С.Сухобской, М.В.Ткачевой, И.Унт, Р.АУтеевои и др. раскрыты пути осуществления обучения на основе учета индивидуальных особенностей учащихся.
Анализ данных исследований показывает, что их характерной особенностью является глубокая детальная разработка отдельных сторон проблемы изучения, учета и формирования индивидуальных особенностей человека в процессе его онтогенеза, при выполнении им той или иной деятельности. Для использования результатов, полученных в этих исследованиях, в процессе методической подготовки будущего учителя математики необходимо, с одной стороны, их обобщение, а с другой — адаптация применительно к процессу обучения школьников математике. Следовательно, имеем противоречие между наличием существенных результатов в области дифференциальной психологии, педагогики и методики преподавания математики по проблеме индивидуализации и дифференциации обучения и отсутствием их обобщения, позволяющего определить основу содержательного компонента методической подготовки будущего учителя математики к обучению учащихся на основе учета их индивидуальных особенностей.
Таким образом, анализ современного этапа развития педагогической науки и практики, школьного образования, состояния методической подготовки будущего учителя математики позволил выявить следующие противоречия:
1) между необходимостью активизации процесса внедрения в школьную практику современных психолого-педагогических теорий, ориентированных на развитие ицдивидуальности учащихся и базирующихся на идее учета их индивидуальных особенностей, и неподготовленностью учителей в этом направлении;
2) между необходимостью подготовки будущего учителя математики к обучению учащихся на основе учета их индивидуальных особенностей" и
12 недостаточной направленностью современной методической подготовки к осуществлению такого обучения;
3) между большим количеством исследований в области
дифференциальной психологии, педагогики и методики преподавания математики по проблеме индивидуализации и дифференциации обучения, существенными результатами, полученными в них, и отсутствием обобщения этих результатов, необходимого для определения основ содержательного компонента методической подготовки будущего учителя математики к обучению учащихся на основе учета их индивидуальных особенностей.
Учебно-воспитательный процесс, управление познавательной деятельностью учащихся в котором осуществляется на основе учета как индивидуальных психологических особенностей отдельных обучаемых, так и доминирующих особенностей групп обучаемых есть дифференцированное обучение (Г.Д.Глейзер). Оно, как справедливо отметил В.АХусев, в условиях классно-урочной системы обучения является средством достижения индивидуального подхода. Исходя из этого, мы под подготовкой будущего учителя математики к дифференцированному обучению учащихся будем понимать его подготовку к обучению учащихся на основе учета их индивидуальных особенностей.
Необходимость преодоления указанных выше противоречий свидетельствует об актуальности исследования на тему "Методическая подготовка будущего учителя математики к дифференцированному обучению учащихся средней школы".
Объектом исследования является профессиональная подготовка будущего учителя математики в педагогическом университете.
Предметом исследования является методическая подготовка будущего учителя математики в педагогическом университете.
Проблема исследования состоит в нахождении путей преодоления указанных выше противоречий.
Целью исследования является теоретическое и практическое обоснование необходимости включения в профессиональную подготовку будущего учителя математики нового ее вида — методической подготовки к дифференцированному обучению учащихся, разработка ее теоретических основ и механизма внедрения в процесс профессиональной подготовки студентов педагогических университетов.
Гипотеза исследования заключается в том, что на современном этапе развития общества, педагогической науки и практики методическая подготовка будущего учителя математики к дифференцированному обучению учащихся средней школы должна быть обязательным компонентом его профессиональной подготовки. Она будет эффективна при выполнении следующих условий:
если основана на результатах исследований в области дифференциальной психологии, педагогики и методики преподавания математики;
если представляет целенаправленный и непрерывный процесс формирования у будущих учителей знаний и умений, необходимых для дифференцированного обучения учащихся и базирующихся на их глубоких знаниях курсов педагогики и психологии, а также методики преподавания математики;
3) если основой содержания подготовки является межпредметная
теоретическая база, представляющая конкретизацию психолого-педагогических
курсов, раскрывающих особенности дифференцированного обучения,
применительно к обучению учащихся математике;
4) если ее внедрение в практику обучения будущих учителей математики
существенно повысит уровень их дифференциально-методической
компетентности.
Цель, предмет, проблема и гипотеза исследования определили три ведущие группы задач.
Первая группа связана с теоретико-методологическим осмыслением основ методической подготовки будущего учителя математики к дифференцированному обучению учащихся и включает следующие задачи:
Провести анализ современного состояния методической подготовки учителя математики в педагогическом вузе;
Провести диагностику дифференциально-методической компетентности учителей-математиков и студентов-математиков;
Выявить теоретико-методологические основания методической подготовки будущих учителей математики к дифференцированному обучению учащихся средней школы;
Провести анализ современного состояния проблемы дифференцированного обучения учащихся средней школы.
Вторая группа направлена на раскрытие сущности методической подготовки будущего учителя математики к дифференцированному обучению и содержит задачи:
Сформулировать концепцию методической подготовки будущего учителя математики к дифференцированному обучению учащихся средней школы;
Разработать теоретические основы подготовки, реализующие положения концепции.
Третья группа связана с внедрением в профессиональную подготовку будущего учителя математики методической подготовки к дифференцированному обучению и содержит задачи:
1. Разработать модель методической подготовки будущего учителя математики к дифференцированному обучению учащихся, обеспечивающую ее
15 включение в процесс профессиональной подготовки студентов педагогических университетов;
Разработать методическое обеспечение модели методической подготовки будущего учителя математики к дифференцированному обучению учащихся;
Провести педагогический эксперимент с целью определения эффективности методической подготовки будущего учителя математики к дифференцированному обучению учащихся средней школы.
Методологической основой исследования являются положения теории
индивидуальных различий, теория индивидуализации и дифференциации
обучения, теория учебной деятельности, теория системного подхода и ее
применение к педагогическим исследованиям, теория содержания
образования, концепция многоуровневого высшего педагогического
образования, работы философов, психологов, дидактов, методистов-
математиков по проблемам развития образования (М.Н.Берулава, А.Л.Вернер,
Х.Ж.Ганеев, Г.Д.Глейзер, Б.В.Гнеденко, В.АГусев, В.В.Давыдов,
В.Д.Дорофеев, Л.В.Занков, А.Н.Колмогоров, Ю.М.Колягин, И.Я.Лернер, АХ.Мордкович, Г.И.Саранцев, А. АСтоляр и другие).
Решение поставленных задач потребовало привлечения следующих методов исследования: анализа философской, психолого-педагогической, научно-методической литературы; изучения опыта профессиональной подготовки студентов педагогических университетов; обобщения собственного опыта работы автора в педагогическом университете; интервьюирования, анкетирования студентов, учителей, наблюдения и анализа продуктов деятельности обучаемых, педагогического эксперимента по проверке эффективности методической подготовки будущих учителей математики к дифференцированному обучению учащихся средней школы.
Работа над диссертацией включала следующие этапы.
этап (1990-1993гг.). Установление исходных фактов исследования, осознание его замысла, проведение констатирующего этапа педагогического эксперимента, проведение теоретического анализа исследований в области дифференциальной психологии, педагогики и методики преподавания математики по проблеме индивидуализации и дифференциации обучения.
этап (1993-1995г.г.). Разработка содержания методической подготовки будущего учителя математики к дифференцированному обучению учащихся, его апробация в рамках спецкурса и спецсеминара на тему "Дифференцированное обучение учащихся математике" и отдельных занятий по курсам "Теоретические основы обучения математике", "Методика обучения математике", "Элементарная математика и ПРМЗ", уточнение и корректировка содержания .
III этап (1995-1999г.г.). Уточнение и коррекция компонентов методической
подготовки будущего учителя математики к дифференцированному обучению
учащихся, создание предметно-уровневой модели подготовки, проведение
обучающего и контролирующего этапов педагогического эксперимента с целью
проверки эффективности методической подготовки будущих учителей
математики к дифференцированному обучению учащихся. Подготовка и
публикация рекомендаций и пособий для студентов по курсам "Теоретические
основы обучения математике", "Методика обучения математике".
IY этап (1999-2000г.г.). Проведение анализа результатов контролирующего этапа педагогического эксперимента, выявление эффективности методической подготовки будущего учителя математики к дифференцированному обучению учащихся, оформление работы. Подготовка и публикация монографии по теме исследования.
Апробация и внедрение результатов исследования. Результаты исследования докладывались и получили одобрение на следующих конференциях и семинарах: на международных конференциях "Актуальные
17 проблемы современного естествознания", проводимых под патронажем ЮНЕСКО (Калуга - 1999, 2000г.г.), на международной научно-практической конференции "Личностно-ориентированное обучение математике" (Смоленск -1999г.), на постоянно действующем Всероссийском семинаре преподавателей математики и методики педагогических вузов (Чебоксары - 1992, Липецк -1993, Елабуга - 1994, Орск- 1995, С-Петербург - 1996, Новгород - 1997, Калуга -1998, Брянск- 1999, Москва - 2000г.г.), на Герценовских чтениях (С-Петербург -1998, 2000гг.), на республиканской научно-практической конференции "Психолого-педагогические проблемы разработки и реализации новых образовательных технологий в подготовке учителя (Тула — 1994), на научной межрегиональной конференции "Проблемы гуманизации математического образования в школе и вузе (Саранск - 1995), на Всероссийских научно-практических конференциях "Новые технологии обучения, воспитания, диагностики и творческого саморазвития личности" (Йошкар-Ола, 1995, 1996), на Всероссийской научно-практической конференции "Качество педагогического образования" (Белгород - 2000г), на Всероссийских научных чтениях, посвященных разработке творческого наследия К.Э.Циолковского (Калуга - 1998, 1999, 2000), на научных конференциях преподавателей и сотрудников КГПУ (Калуга - 1997, 1998, 1999,2000гг.).
Внедрение научных результатов осуществлялось в процессе публикации монографии, учебных пособий, методических рекомендаций, статей общим объемом более 50п.л. Разработанная автором предметно-уровневая модель методической подготовки будущих учителей математики к дифференцированному обучению учащихся средней школы внедрена в практику обучения студентов физико-математического факультета КГПУ им.К.Э.Циолковского, БГПУ им. И.Г.Петровского. Материалы исследования использовались при чтении лекций и проведении занятий с учителями-математиками в Тульском областном ИУУ, Калужском областном ИУУ,
18 Хакасском республиканском ИУУ. Методические материалы, раскрывающие возможности учета индивидуальных особенностей учащихся на различных этапах учебной деятельности, направленной на овладение компонентами содержания школьного курса математики, используются в практике работы учителей математики ряда школ г. Абакана, Калуги, Москвы. Научная новизна исследования состоит в том, что в нем:
обоснована необходимость введения нового вида профессиональной подготовки будущего учителя математики — методической подготовки к дифференцированному обучению учащихся средней школы;
разработана целостная концепция методической подготовки будущего учителя математики к дифференцированному обучению учащихся средней школы, раскрывающая сущность этого вида подготовки, регулирующая процесс конструирования компонентов подготовки и внедрения ее в практику обучения студентов - будущих учителей математики;
представлены пути реализации положений концепции при конструировании компонентов подготовки;
разработана предметно-уровневая модель методической подготовки будущего учителя математики к дифференцированному обучению учащихся средней школы, обеспечивающая включение данного вида подготовки в процесс обучения студентов педвузов.
Теоретическая значимость исследования состоит в том, что в нем:
создана концепция методической подготовки будущего учителя математики к дифференцированному обучению учащихся средней школы;
проведен анализ и обобщение результатов исследований по проблеме дифференцированного обучения учащихся;
определены индивидуальные особенности учащихся, к учету проявлений которых будущий учитель математики должен приобрести знания и умения в процессе методической подготовки к дифференцированному
19 обучению учащихся, выявлены возможности учета и формирования этих индивидуальных особенностей при реализации различных компонентов учебной математической деятельности, направленной на овладение содержанием школьного курса математики;
- определены компоненты методической подготовки будущего учителя
математики к дифференцированному обучению учащихся средней школы;
- введено понятие дифференциально-методической компетентности
учителя математики, под которым понимают свойство личности,
выражающееся в наличии глубоких и прочных знаний и умений в области
дифференцированного обучения, а также соответствующего опыта
практической деятельности. Выделены и охарактеризованы уровни
дифференциально-методической компетентности.
Практическая значимость исследования состоит в том, что:
выявлен механизм построения моделей методической подготовки будущих учителей математики к дифференцированному обучению;
создана предметно-уровневая модель методической подготовки будущих учителей математики, отражающая особенности многоуровневого высшего педагогического образования и позволяющая включить данный вид подготовки в процесс обучения студентов в педагогическом университете;
созданные и опубликованные монография, пособия, методические рекомендации дают возможность осуществлять методическую подготовку студентов к дифференцированному обучению в любом педвузе;
4) внедрение в процесс обучения студентов методической подготовки к
дифференцированному обучению позволяет существенно повысить уровень их
дифференциально-методической компетентности.
Достоверность и обоснованность результатов исследования гарантирована его методологией, адекватной целям, предмету и задачам исследования,
20 обоснованностью положений, составляющих концепцию исследования, результатами педагогического эксперимента.
На защиту выносятся следующие положения:
Преодоление противоречия между требованиями к подготовке учителя математики на современном этапе развития общества, педагогической науки и практики и состоянием профессиональной подготовки учителя математики в педвузе обуславливают необходимость введения нового вида профессиональной подготовки - методической подготовки к дифференцированному обучению учащихся;
Методическая подготовка будущего учителя математики к дифференцированному обучению учащихся средней школы должна представлять целенаправленный и непрерывный процесс формирования у будущих учителей знаний и умений, необходимых для дифференцированного обучения учащихся и базирующихся на их глубоких знаниях курсов педагогики и психологии, а также методики преподавания математики;
Основу концепции методической подготовки будущего учителя математики к дифференцированному обучению составляют принципы интегративности, предметной приоритетности и компонентности, системности и целостности, паритетности и распределенности, регулирующие как процесс конструирования всех компонентов подготовки., так и ее реализацию на практике.
Базисом содержательного компонента методической подготовки будущего учителя математики к дифференцированному обучению учащихся являются:
результаты процесса обобщения материалов исследований в области дифференциальной психологии, педагогики и методики преподавания математики по проблеме индивидуализации и дифференциации обучения,
структура профессиональной деятельности учителя математики;
Для достижения целей подготовки, овладения ее содержанием необходимо наряду с традиционно применяемыми в методической подготовке студентов методами и формами обучения использовать метод теоретико-практического моделирования, компьютерного тренинга, активную непрерывную педагогическую практику, многоуровневые индивидуальные самостоятельные работы;
Необходимым условием внедрения методической подготовки к дифференцированному обучению в процесс профессиональной подготовки студентов-математиков педагогических университетов в условиях многоуровневого высшего педагогического образования является создание предметно-уровневой модели, обеспечивающей выполнение требований целенаправленности и непрерывности.
7. Методическая подготовка будущих учителей математики к
дифференцированному обучению учащихся средней школы обладает высокой
эффективностью, обеспечивая существенное повышение уровня
дифференциально-методической компетентности студентов при ее внедрении в
их обучение.
Структура диссертации. Работа состоит из введения, материалы которого представлены выше, трех глав, заключения, списка литературы и приложений.
Результаты анализа методической подготовки будущих учителей математики к дифференцированному обучению учащихся средней школы
При проведении анализа методической подготовки будущего учителя математики к дифференцированному обучению учащихся мы условно разбили анализируемые работы на три группы. К первой отнесли исследования Г.Л.Луканкина, .В.Метельского, И.А.Новик, Т.К.Смыковской, Н.Л.Стефановой, З.О.Шварцмана и др., в которых представлена целостная система методической подготовки будущего учителя математики. Ко второй - исследования, посвященные разработке одного из аспектов методической подготовки учителя математики. Это работы Н.И.Батькановой, О.А.Иванова, Т.А.Ивановой, В.Ф.Любичевой, Е.С.Петровой, Е.В.Силаева, И.М.Смирновой, Р.А.Утеевой, О.И. Федяева и др. Третью группу работ составляют учебники, пособия, программы по дисциплинам, . ориентированным на осуществление методической подготовки будущего учителя математики.
Анализ исследований первой группы начнем с рассмотрения системы методической подготовки, разработанной Н.Л.Стефановой. Одним из основных принципов системы она называет принцип личностной ориентации. Раскрывая суть этого принципа, автор указывает, что в процессе обучения должны быть созданы "условия для становления личностно значимых для студентов профессиональных качеств, характеризующих учителя математики современной развивающейся школы"([308], с. 140). Исходя из этого, выпускник педагогического вуза должен приобрести готовность к реализации личностно-ориентированной методики обучения математике учащихся, где во главу угла ставятся интересы их развития. Это, в свою очередь, означает, что он должен владеть "способами реализации различных моделей обучения математике, ориентированных на особенности разных типологических групп учащихся"([308], с. 142). Реализация данных положений в системе методической подготовки, осуществляемой на факультете математики ЛПГУ им.А.И.Герцена, частично имеет место только при изучении курса "Методика обучения математике", рассматривающего процесс обучения математике в 5-9 и 10-11 классах (или классах с углубленным изучением математики). В требованиях к результатам изучения этого курса говорится, что одним из условий, позволяющих студентам приобрести умения конструировать процесс обучения математике, является знание ими наиболее распространенных приемов работы, учитывающих возрастные и некоторые типологические особенности учащихся. Однако, характеризуя содержание этого курса, стратегию его освоения и схему изучения конкретных тем, входящих в содержание, автор не касается вопроса применения тех или иных приемов работы с учащимися различных типологических групп. Так, рассматривая в качестве примера тему "Обыкновенные дроби", она в модуль моделирования включила "задания на разработку введения понятия обыкновенной дроби, правила сравнения дробей, правила сложения и вычитания смешанных чисел (фрагменты объяснения учителя); задания на разработку фрагмента урока, основная цель которого - выработка у учащихся умения складывать обыкновенные дроби с одинаковыми знаменателями; задание на разработку сценария заключительного урока по теме; задания на разработсу серии заданий для устной работы учащихся, содержания самостоятельной и контрольной работы по теме"([307], с.47). Как видно их текста, выполнение ни одного из заданий не направлено на подготовку студентов к дальнейшей работе с учащимися, обладающими различными индивидуальными особенностями. Анализ других модулей и, в первую очередь, организационного, также не дает возможности увидеть, каким образом у студентов могут быть сформированы умения по конструированию процесса обучения математике различных типологических групп учащихся.
Таким образом, изучение студентами курса "Методика обучения математике" не реализует задачу их подготовки к осуществлению процесса обучения на основе учета индивидуальных особенностей учащихся.
Помимо данного курса, к обязательным учебным курсам, направленным на приобретение студентами методических знаний и умений, относятся "Теоретические основы обучения математике", "Методический практикум", "Теория и задачи школьной математики", "Педагогическая практика". Однако ни в требованиях к результатам изучения этих курсов, ни в характеристике модулей, составляющих их содержание, не говорится о приобретении студентами знаний и умений по конструированию и осуществлению обучения учащихся математике, реализующего идею учета их индивидуальных особенностей учащихся. Вопросы технологии обучения математике на этой основе не включены в содержание ни одного из обязательных курсов.
Концепция методической подготовки будущего учителя математики к дифференцированному обучению учащихся средней школы
Результаты проведенного в первой главе анализа методической подготовки будущего учителя математики позволяют утверждать, что в настоящее время отсутствует целенаправленная работа по формированию у студентов знаний и умений, необходимых им для осуществления дифференцированного обучения учащихся средней школы. Таким образом, имеем противоречие между необходимостью осуществления такой подготовки и ее отсутствием.
Концепция методической подготовки будущего учителя математики к дифференцированному обучению учащихся выражает необходимость:
- целенаправленного и непрерывного формирования у студентов знаний и умений, необходимых для дифференцированного обучения учащихся и базирующихся на глубоких знаниях курсов педагогики и психологии, а также методики преподавания математики;
- рассмотрения межпредметной теоретической базы, представляющей конкретизацию психолого-педагогических курсов, раскрывающих особенности дифференцированного обучения, применительно к обучению учащихся математике, в качестве основы содержания подготовки;
- использования в процессе подготовки методов и форм обучения являющихся необходимыми для" овладения будущим учителем математик знаниями, умениями, связанными с дифференцированным обучением учащихся, и приобретения им соответствующего опыта практическое деятельности;
- приобретения студентами практического опыта дифференцированное обучения учащихся как обязательного условия осуществления их подготовки.
Основу концепции составляют принципы, сформулированные нами на основе анализа сущности дифференцированного обучения, возможностей применения системного подхода к процессу обучения, сущности профессиональной деятельности учителя математики. Они регулируют процесс построения и осуществления методической подготовки будущего учителя математики к дифференцированному обучению учащихся. 1. Принцип интегративности.
Характеристика сущности дифференцированного обучения, возможностей его осуществления и понятия методической подготовки учителя математики к этому процессу дали возможность выявить нам теоретическую базу методической подготовки будущего учителя математики к дифференцированному обучению учащихся. Как показали результаты проведенного анализа и наш собственный опыт, ее должен составлять материал о:
- сущности индивидуального и дифференцированного подхода к учащимся в обучении;
- сущности понятия "дифференцированное обучение";
- индивидуальных особенностях человека, возможностях их диагностики, учета и формирования;
- структуре учебной деятельности и индивидуальных особенностях, влияющих на успешность реализации различных ее компонентов;
- компонентах содержания школьного курса математики и методике их изучения на основе учета индивидуальных особенностей учащихся;
- конструировании различных фрагментов учебного процесса в условиях дифференцированного обучения и т.д.
Анализ данного списка показывает межпредметный, интегративный характер теоретической базы методической подготовки будущего учителя математики к дифференцированному обучению учащихся средней школы.
Так как методическая подготовка к дифференцированному обучению представляет разновидность профессиональной подготовки будущего учителя математики, то при определении ее целей необходимо руководствоваться несколькими факторами. Во-первых, сущностью дифференцированного обучения, позволяющей отразить специфику подготовки. Во-вторых, структурой профессиональной деятельности учителя математики, способствующей выявлению возможностей формирования профессиональных умений.
Предметно-уровневая модель методической подготовки студентов педвузов к дифференцированному обучению учащихся математике
Необходимым условием внедрения в практику обучения студентов педагогических университетов методической подготовки к дифференцированному обучению учащихся средних школ является построение ее предметной модели, под которой мы понимаем совокупность учебных предметов и элементов их содержания, а также видов учебной работы, при изучении и выполнении которых могут быть достигнуты цели подготовки.
В соответствии с принципом распределенности механизм построения предметной модели включает:
- выявление учебных дисциплин (видов учебной работы), при изучении (выполнении) которых студенты должны достигнуть целей подготовки;
- установление того, какие цели подготовки могут и должны быть достигнуты при изучении (выполнении) каждого учебного предмета (вида учебной работы);
- выявление элементов содержания подготовки, входящих в содержание каждой учебной дисциплины.
Особенностью современного этапа подготовки учителя является многоуровневость этого процесса, а это означает, что цели и содержание методической подготовки студентов педвузов к дифференцированному обучению учащихся математике необходимо "разложить" не только по учебным дисциплинам и видам учебной работы, но и по ступеням (уровням) обучения. Учет этого фактора позволяет говорить о механизме построения предметно-уровневой модели методической подготовки студентов педвузов к дифференцированному обучению учащихся средних школ математике.
Таким образом, под предметно-уровневой моделью методической подготовки мы будем понимать распределенную по ступеням обучения совокупность учебных предметов, элементов их содержания, видов учебной работы, при изучении и выполнении которых могут быть достигнуты цели подготовки
Для реализации первого этапа построения предметно-уровневой модели, т.е. выявления учебных предметов, при изучении которых может быть реализован данный вид методической подготовки, проанализируем его цели с точки зрения установления путей их достижения. В результате имеем следующие варианты:
1. Достижение цели может быть осуществлено в рамках изучения одного учебного предмета, имеющего методическую направленность.
Например, приобретение знаний о предметно-математических индивидуальных особенностях, являющихся приоритетными при реализации различных компонентов структуры учебной математической деятельности, направленной на овладение содержанием школьного курса математики, возможно при изучении одного учебного предмета. Очевидно, что это должен быть предмет, в котором рассматриваются компоненты содержания школьного курса математики и методика работы по их изучению.
2. Цель невозможно достичь при изучении одной дисциплины. Для этого требуется соответствующая целенаправленная работа в рамках нескольких дисциплин, причем каждая из них связана с достижением некоторой составляющей общей цели. Все дисциплины при этом "равноправны", среди них нет ведущей в процессе достижения цели. Например, при формировании умений по подбору и конструированию учебных материалов студенты имеют дело с учебными материалами разных видов: задачами, вопросами, текстами и т.д. Работа с ними является приоритетом различных учебных дисциплин, а поэтому и формирование указанных выше умений должно осуществляться в рамках соответствующих учебных предметов.