Введение к работе
Актуальность темы исследования. В развитых странах срочный рынок - рынок фьючерсных и опционных контрактов - является важнейшей составляющей финансового рынка, поскольку его оборот в десятки раз превышает объем торгов на рынке базовых активов. Срочный рынок является весьма популярным среди большого круга инвесторов благодаря широким возможностям при минимальных затратах эффективно управлять ценовыми рисками рынков акций, валют, а также долгового и товарного рынков.
В России появление рынка фьючерсов и опционов в РТС (FORTS) в значительной степени обусловлено финансовым кризисом 1998 г., когда деятельность участников фондового рынка была практически парализована. В настоящее время рынок FORTS стал ведущей площадкой по торговле производными финансовыми инструментами не только в нашей стране, но и в странах Восточной Европы. Задача создания самостоятельного финансового центра в России является важнейшим приоритетом долгосрочной экономической политики страны.
Согласно "Стратегии развития финансового рынка Российской Федерации на период до 2020 года", в рамках решения задачи по повышению ёмкости и прозрачности российского финансового рынка планируется расширить спектр производных финансовых инструментов и укрепить нормативно-правовую базу срочного рынка. Таким образом, в ближайшем будущем следует ожидать качественный рост объёмов сделок с производными финансовыми инструментами. В связи с этим, важной актуальной задачей является применение на российском срочном рынке адекватных математических моделей ценообразования деривативов. Поскольку российский финансовый рынок достаточно молод, имеет смысл воспользоваться накопленным опытом стран Западной Европы и США в вопросах моделирования и ценообразования производных финансовых инструментов.
Производные инструменты неоднократно становились объектом исследования учёных. При этом, в силу более позднего формирования структур рынка деривативов в нашей стране, большая часть работ по данной тематике принадлежит иностранным исследователям, в число которых входят: S. Asmussen, F. Avram, О. Е. Barndorff-Nielsen, D. S. Bates, М. N. Broadie, A. Bensoussan, F. Black, P. Carr, R. Cont, J. C. Cox, F. Delbaen, D. Duffie, E. Eberlein, P. Glasserman, S. L. Heston, A. Hirsa, J. E. Ingersoll, P. Jaillet, I. Karatzas, A. E. Kyprianou, S. Kou, D. Lamberton, B. Lapeyre, F. Longstaff, D. B. Madan, R. Merton, E. Mordecki, G. Peskir, H. Pham, L. С. G. Rogers, S. A. Ross, W. Schachermayer, M. Scholes, W. Schoutens, C. Schwab, E. Schwartz, N. Touzi, M. Yor, X. L. Zhang и другие.
В нашей стране большое влияние на формирование и развитие финан-
совой математики было оказано членом-корреспондентом РАН, профессором А.Н.Ширяевым и его учениками. На юге России указанное направление первым стал развивать профессор С.З.Левендорский. В настоящее время многие российские учёные активно работают в области финансовой математики в России и зарубежом, являются консультантами финансовых институтов, входят в редколлегии ведущих международных журналов. В список этих учёных входят К. А. Боровков, С. И. Боярченко, Г. И. Белявский, А. А. Гущин, Ю. М. Кабанов, Д. О. Крамков, С. 3. Левендорский, А. В. Мельников,
A. А. Новиков, И. В. Павлов, Э. Л. Пресман, Д. Б. Рохлин, В. Н. Тутубалин,
B. М. Хаметов, А. С. Чёрный, А. Н. Ширяев и др.
Напомним, что одновременно с началом первых торгов на Чикагской бирже в 1973 году, появляются работы Р.С. Мертона, Ф. Блэка и М. Шоулса, посвященные ценообразованию опционов. На основе этих работ была построена теория ценообразования деривативов, использующая гауссовскис процессы для моделирования финансовых рынков. Согласно этой теории, справедливые цены опционов представляют собой определённые функционалы от моделирующего процесса. По сути, опцион представляет собой контракт, который в обмен на премию (цену опциона) даёт право его владельцу при осуществлении определённых условий продать или купить некоторый финансовый актив по фиксированной цене. Вычисление справедливой цены опциона в модели Блэка-Шоулса, как правило, сводится к решению дифференциального уравнения в частных производных с определёнными начальными и краевыми условиями или свободной границей. Данное уравнение в финансовой математике носит имя Блэка-Шоулса и является ничем иным, как обратным уравнением Колмогорова. Вместе с тем, непрерывность траекторий и "тонкие хвосты", приводящие к недооцениванию ценовых рисков, делали эту модель не слишком близкой к реальности.
С конца прошлого века выделился определённый класс более реалистичных негауссовских процессов Леви, обобщающих модель Блэка-Шоулса. Преимуществом новых моделей является с одной стороны возможность моделирования скачков цены акции, с другой - более реальная оценка ценовых рисков. В отличие от гауссова случая, соответствующие функционалы от процессов Леви связаны с интегро-дифференциальным уравнением Колмогорова (обобщённым уравнением Блэка-Шоулса).
Наличие стохастической волатильности в модели Леви увеличивает размерность задачи и значительно усложняет ее решение. В последнее время многих авторов привлекает задача, когда модель зависит от марковской цепи с конечным числом состояний, которые могут быть интерпретированы как случайно изменяющиеся факторы среды (напр., финансового рынка). Наибольший интерес представляет моделирование скачков (напр., цены акции) с помощью негауссовских процессов Леви с переключениями режима по па-
раметрам. В частности, такие процессы позволяют приблизить модели Леви со стохастической волатильностью. Важные для приложений задачи вычисления функционалов от процессов Леви с переключениями режима сводятся к решению достаточно сложных систем интегро-дифференциальных уравнений с частными производными.
С точки зрения банковской практики для принятия оперативных решений широко востребованы быстрые алгоритмы ценообразования производных финансовых инструментов; в частности, это необходимо для калибровки моделей финансового рынка. Наибольший практический интерес представляет подбор параметров модели по ценам экзотических опционов. Однако в настоящий момент, методы ценообразования таких опционов в общих моделях Леви являются затратными по времени.
Теория опционов может применяться не только на финансовом рынке, но и в реальном секторе экономики. В частности, метод реальных опционов позволяет вычислить стоимость инвестиционного проекта. Вместе с тем, реальные опционы могут быть найдены в таможенно-тарифной и налоговой политике. Следует отметить, что поступления от внешнеэкономической деятельности (таможенные пошлины, сборы, НДС, акцизы и др. платежи) представляют значительную долю доходной части государственного бюджета Российской Федерации (от 30% до 50%). Таким образом, актуальность проведения научно-исследовательской работы, посвященной задачам анализа финансовых рисков, связанных с таможенной деятельностью, определяется значимостью данного вопроса для Федеральной таможенной службы России.
Диссертационная работа посвящена эффективным математическим методам вычисления специального вида функционалов, возникающих в финансовой математике при ценообразовании опционов в моделях, допускающих скачки. Работа выполнена в рамках федеральной целевой программы "Научные и научно-педагогические кадры инновационной России", государственный контракт № 02.740.11.0208 от 7 июля 2009 г.
Следует отметить, что большое влияние на автора оказали научные работы С. 3. Левендорского, которому хотелось бы выразить глубокую благодарность за введение в область финансовой математики.
Цель диссертационной работы состоит в разработке эффективных и универсальных математических методов вычисления безарбитражных цен широкого спектра производных финансовых инструментов в моделях, допускающих скачки.
Для достижения поставленных целей были решены следующие задачи:
разработан универсальный и эффективный метод приближенной факторизации Винера-Хопфа для широкого класса моделей Леви (метод "Быстрой факторизации Винера-Хопфа");
разработаны эффективные методы ценообразования барьерных и цифровых опционов первого касания в моделях Леви;
разработаны эффективные методы ценообразования барьерных и цифровых опционов первого касания в моделях Леви с переключением режимов по параметрам процесса, обобщаемые на модели Леви со стохастической волатильностью
применён асимптотический метод вычисления безарбитражной цены цифровых опционов первого касания в негауссовой модели Леви;
предложена методика оценки финансового риска, связанного с получением таможенных платежей ниже планового задания;
предложен метод реальных опционов для обоснованного формирования плановых показателей получения таможенных платежей.
Методика исследования. Теоретическую и методологическую основу работы составили исследования в области стохастической финансовой математики, свойств бесконечно делимых распределений и интегральных преобразований, теории процессов Леви, псевдодифференциальных операторов и вычислительной математики.
Научная новизна. Центральным результатом работы является метод приближенной факторизации Винера-Хопфа для широкого класса моделей Леви в контексте ценообразования опционов. Указанный метод позволяет за секунды и даже доли секунды решать огромный спектр задач финансовой математики. В частности, с помощью разработанного метода "Быстрой факторизации Винера-Хопфа" (БФВХ) можно вычислять безарбитражные цены барьерных, бермудских опционов, цифровых опционов первого касания в общих моделях Леви. Метод легко обобщается на случай моделей Леви с переключением режимов по параметрам и моделей со стохастической волатильностью. Вместе с тем, возможно распространение разработанного метода и на другие виды опционов (напр., американские, Swing, lookback и др.). Метод БФВХ - это первое применение метода приближенной факторизации к задачам финансовой математики.
В работе предложена эффективная асимптотическая формула для опционов первого касания в модели Normal Inverse Gaussian, опирающаяся на факторизацию Винера-Хопфа. Разработана точная конечно-разностная схема для негауссовых моделей Леви. Предложен общий подход, основывающийся на факторизации матриц Теплица, для решения неявных конечно-разностных схем в контексте ценообразования опционов. Разработаны новые математические методы анализа и оценки рисков, возникающих в таможенной
деятельности. В качестве элемента управления финансовыми рисками, связанными с получением таможенных платежей, предложен метод реальных опционов.
Теоретическая и практическая значимость.
Теоретическая ценность результатов диссертации состоит в построении приближенной факторизации Винера-Хопфа и разработке эффективных математических методов решения начально-краевых задач для обобщённого уравнения Блэка-Шоулса, возникающих в финансовой математике при решении задачи ценообразования опционов с барьерами. Указанные задачи могут возникать и в других приложениях при моделировании движения частицы с помощью процессов Леви в одномерном пространстве с поглощающим барьером.
Результаты диссертации нашли практическое применение и внедрены в программный продукт Prcmia (web-портал: ) в рамках участия в международном научно-исследовательском проекте по финансовой математике "Mathfi" на базе французского национального научно-исследовательского института информатики и автоматизации в Париже (INRIA-Rocquencourt, Paris, web-портал: ). Программный продукт Premia решает задачи по ценообразованию опционов, хеджированию и калибровке моделей финансовых рынков. Данный проект реализуется в тесном сотрудничестве с консорциумом финансовых институтов, включающим в себя ведущие банки Франции и Австрии.
В настоящее время автор входит в группу постоянных разработчиков этого программного продукта. Разработанные автором алгоритмы вошли в выпуски Premia 11, Premia 12 и Premia 13. Программный продукт Premia зарегистрирован "Французским агентством по защите программ" (web-портал: ), номер лицензии IDDN FR 001.190010.009.
В частности, автором разработаны и внедрены в программную платформу Premia:
метод БФВХ для барьерных и цифровых опционов первого касания в 4 моделях Леви: TSL, NIG, Kou, VG;
метод БФВХ для барьерных и цифровых опционов первого касания в 2 моделях Леви с переключением режимов: TSL, Кои;
конечно-разностная схема для модели Леви KoBoL;
метод БФВХ для барьерных опционов в модели Хестона.
Предложенные в диссертационном исследовании методы оценки финансовых рисков могут быть использованы региональными таможенными управлениями при составлении и контроле за выполнением плановых заданий по таможенным платежам.
Материалы диссертационного исследования используются в учебном процессе в Южном федеральном университете при преподавании специального курса "Финансовая математика" и в дальнейшем могут быть применены в специальных курсах магистерской программы "Финансовая математика", направление 010400 - Прикладная математика и информатика.
Апробация работы. Основные положения диссертации докладывались на международных, российских и региональных конференция и научных семинарах в России и зарубежом, в том числе:
Конференция AMaMeF по численным методам в финансах, Французский национальный научно-исследовательский институт информатики и управления (INRIA-Rocquencourt), 1-3 февраля, 2006, Париж, Франция
Встречи Американского математического общества, Международный университет Флориды, Майами, США, 1-2 апреля, 2006
Пятый Всемирный Конгресс Финансового Общества Башелье, Лондон, Великобритания, 15-19 июля, 2008
Пятая международная конференции "Передовые математические методы в области финансов", AMaMeF 2010, 3 мая - 9 мая 2010 г., Блсд, Словения
Международная научно-практическая видео-конференция "Модернизация таможенного дела - актуальная задача современного развития ФТС России", 22 октября 2010 года, г. Москва-Люберцы
Международный научный семинар "Современные методы и проблемы теории операторов и гармонического анализа и их приложения", Южный федеральный университет, г. Ростов-на-Дону, 24-28 апреля 2011
Международная научно-практическая конференция "Актуальные аспекты освоения требований международных стандартов ИСО серии 9000 в таможенных службах государств-участников Таможенного союза", 21 декабря 2011 года, г. Москва-Люберцы
Всероссийские симпозиумы по прикладной и промышленной математике (Ростов-на-Дону, май 2002 г., Йошкар-Ола, декабрь 2006 г, Сочи-Дагомыс, октябрь 2010г, Казань, май 2011г).
научно-практические семинары и конференции на базе Ростовского филиала Российской таможенной академии, посвященные вопросам оптимизация таможенных процедур, 2005-2009 годы.
научный семинар на кафедре исследования операций, Южного федерального университета, Ростов-на-Дону, октябрь, 2009г
заседание Ростовского математического общества, Ростов-на-Дону, декабрь, 2009
научный семинар "Вероятностные методы в финансах" в университете Пари-Эст Марн-ля-Валле (Paris-Est Marne-la-Vallee), Париж, февраль 2009 г, январь 2010 г (среди участников семинара D.Lamberton, B.Lapeyre)
встреча разработчиков программного продукта PREMIA и аналитиков банков Франции и Австрии, институт Башсльс, Париж, Франция, февраль 2009 г.
научный семинар на факультете экономики и финансов, университет г. Удине, Италия, май 2010 г
научный семинар "Вероятностные проблемы управления и стохастические модели в экономике, финансах и страховании", Центральный экономико-математический институт РАН, ноябрь, 2010 г
научный семинар кафедры математики "Современная математика и концепции инновационного математического образования", Финансовый университет при Правительстве РФ, декабрь, 2010 г
Публикации. Материалы диссертации опубликованы в 36 печатных работах (общий объём 46,12 п.л., личный вклад 31,57 п.л.), в том числе 2 монографии, 4 статьи в международных научных журналах, входящих в международные системы цитирования (Web of Science, Mathematics Abstracts, Scopus, Springer), 11 публикаций в рецензируемых научных журналах и изданиях, рекомендованных ВАК России.
Структура и объем диссертации. Диссертация состоит из введения, обзора литературы, 5 глав, заключения и библиографии. Общий объем диссертации 273 страниц, из них 245 страницы текста, включая 9 таблиц и 11 рисунков. Библиография включает 216 наименований на 28 страницах.