Электронная библиотека диссертаций и авторефератов России
dslib.net
Библиотека диссертаций
Навигация
Каталог диссертаций России
Англоязычные диссертации
Диссертации бесплатно
Предстоящие защиты
Рецензии на автореферат
Отчисления авторам
Мой кабинет
Заказы: забрать, оплатить
Мой личный счет
Мой профиль
Мой авторский профиль
Подписки на рассылки



расширенный поиск

Снижение уровня банковского риска посредством прецедентного моделирования кредитной ситуации Черников, Константин Сергеевич

Диссертация, - 480 руб., доставка 1-3 часа, с 10-19 (Московское время), кроме воскресенья

Автореферат - бесплатно, доставка 10 минут, круглосуточно, без выходных и праздников

Черников, Константин Сергеевич. Снижение уровня банковского риска посредством прецедентного моделирования кредитной ситуации : диссертация ... кандидата технических наук : 05.13.18 / Черников Константин Сергеевич; [Место защиты: Ульян. гос. ун-т].- Ульяновск, 2012.- 151 с.: ил. РГБ ОД, 61 12-5/2272

Введение к работе

Актуальность темы

В настоящее время ситуация на мировых финансовых рынках, спровоцированная кризисом на ипотечном рынке США, продолжает усугубляться. Это характеризуется выводом средств инвесторов с развивающихся рынков, в том числе из России, а также банкротством крупнейших инвестиционных банков. Происходящие в мире события негативно сказываются и на российском финансовом рынке.

Существующие тенденции развития банковского дела и статистические данные указываю на существенный рост рисков, связанные с банковской деятельностью, в том числе кредитного риска. В российской федерации на 01.01.2011 г. физическим лицам выдано кредитов на сумму 3 715 266 млн. руб., из них 23 537 млн. руб. составляет просроченная задолженность. В Ульяновской области выдано 29 421 млн. руб., из них 237 млн. составляет просроченная задолженность, в этих условиях для банков становится очень важной разработка соответствующего механизма расчета, оценки, контроля и управления рисками.

Решение таких задач требует не только знаний теории экономики, кредитования, психологии заемщиков, которыми в большей степени обладают наиболее опытные специалисты, но и знаний, основанных на интуиции и многолетнем опыте. Таким образом, задача кредитования в разрезе решения о предоставлении кредита во многом является творческой, базируется на эмпирическом опыте специалистов, а эффективность результатов во многом определяется наличием этих знаний и опыта у специалистов.

Применяемые в данной области методы и средства моделирования не отвечают в полной мере задачам воспроизводства реального человеческого опыта и знаний специалистов-практиков. В то же время исследования в области искусственного интеллекта и экспертных систем в частности показали эффективность применения для таких случаев интеллектуальных систем поддержки принятия решений, основанных на экспертных знаниях. Известны теоретические работы и практические внедрения в этой области научных коллективов под руководством таких известных отечественных и зарубежных ученых, как Поспелов Д.А., Загоруйко Н.Г., Переверзев-Орлов В.С., и других. Однако в области уменьшения кредитного риска задача разработки и промышленного применения интеллектуальных систем поддержки принятия решений остается нерешенной. Актуальность задач, связанных с разработкой и внедрением таких систем определило те цели и задачи, которые исследуются в диссертационной работе.

Актуальность рассмотрения в диссертационной работе темы уменьшения банковских кредитных рисков заключается еще и в том, что данная проблема в России разрабатывалась достаточно мало. В отечественной литературе практически полностью отсутствуют комплексные исследования в данной области. Существуют отдельные публикации специалистов, по отдельным определенным видам риска,. Но работ, рассматривающих комплексно уменьшение кредитных рисков банка, реально не существует. Достаточно редко в отечественной литературе можно встретить работы, освещающие опыт практического управления рисками в западных банках. Что касается решения данной проблемы на практике, то следует отметить, что российские (да впрочем, и зарубежные) банки стали вплотную заниматься этой проблемой относительно недавно. Все это говорит об актуальности проблем, затронутых в диссертационной работе.

В силу недостаточности знаний об объектах кредитования и множестве ситуаций, в которых определяется необходимая информация, получить точную модель поведения банка и заемщика не представляется возможным.

При выдаче кредитов, необходимо обладать пониманием конкретной ситуации, то есть учитывать все ее стороны (банк-заемщик-кредитная ситуация) и возможные варианты развития событий.

Всякая кредитная ситуация характеризуется определенным набором данных. Он может быть полным, тогда принимаемое решение на его основе будет наиболее верным (с определенной вероятностью) и риск может быть сведен к минимальному уровню, который в данный момент, может быть, достигнут, однако еще остается плохо снижаемый остаток риска. Когда набор данных не обладает полнотой и высокой достоверностью, решения не могут быть качественными и риск невозврата кредита увеличивается.

Для определения достаточности набора ситуационных данных можно воспользоваться следующим приемом: за основу набора брать ту совокупность данных, которую банк получает по традиционно принятой процедуре и которая в лучшем случае дает примерно девяносто пять процентов уверенности в правильности принимаемого решения. Следовательно, около пяти процентов – это «неснижаемый риск», то есть, уменьшить его нельзя традиционными способами, требуются дополнительные действия.

Улучшить ситуацию по сокращению оставшегося риска можно только в одном случае – получением новой дополняющей информации к имеющейся. Множество набранных произвольных данных в кредитной ситуации обладает высокой энтропией. Но когда эти данные организованы или структурированы по заданному правилу – энтропия ситуации уменьшается.

Объектом исследования являются модели информационных процессов, присутствующих в кредитных ситуациях.

Предметом исследования являются информационные средства снижения риска кредитования.

Цель и задачи работы:

Целью работы является разработка информационной системы анализа и прецедентного моделирования кредитных ситуаций для снижения банковского риска.

Для достижения названной цели решены следующие задачи:

  1. Разработан алгоритм оценки кредитной ситуации, учитывающий дополнительные данные о заемщике кредита и прецедентные данные о схожих ситуациях.

  2. Разработана система извлечения и формирования дополняющей информации о заемщике (как ее источнике) и использования ее в системе управления кредитным риском.

  3. Разработана база прецедентов для хранения и обработки кредитной ситуации с учетом дополняющей информации в системе управления кредитным риском.

  4. Разработана система прецедентного моделирования кредитных ситуаций, основанной на базе прецедентов, дополнительной информации о заемщике и прецедентах.

Методы исследования. В диссертационной работе применялись методы математического моделирования, экспертных оценок, теории нечеткой логики, теории игр, нейронных сетей, теории программирования.

Научная новизна:

  1. Разработан синдромный портрет заемщика (физического лица), позволяющий снизить неопределенность данных, описывающих кредитную ситуацию и расширить атрибутику прецедента, тем самым, при обработке повысить качество принимаемых решений.

  2. Применение набора интеллектуальных методов (нечеткая база знаний, нейронная сеть, база прецедентов) с точки зрения дифференцированного подхода к обслуживанию заемщиков, позволяющему решать задачи кредитования в различных условиях (риска, неопределенности, противодействия).

  3. Для формализации предметной области в условиях неопределенности применена методика нечеткой логики и построена нечеткая база знаний, позволяющая получить решение при неполных и недостоверных данных.

Основные положения, выносимые на защиту:

  1. Модель кредитных ситуаций, позволяющих уменьшать остаточный банковский риск.

  2. Модель получения дополнительных данных из типовых кредитных ситуаций, обеспечивающая при ее реализации улучшение качества принимаемых решений.

  3. Алгоритм оценки кредитной ситуации, учитывающий дополнительные данные о заемщике кредита и прецедентные данные о схожих ситуациях, являющийся основой в созданном программном комплексе управления кредитным риском с использованием численных методов нейронной сети, экспертных оценок и аппарата нечеткой логики.

  4. Программный комплекс моделирования кредитных ситуаций на основе дополнительной информации о заемщике и базы прецедентов.

Достоверность полученных результатов. Достоверность научных положений и результатов исследований обеспечивается строгостью постановок задач, корректностью выбранных методов. Достоверность также подтверждается проведенными компьютерными экспериментами и результатами тестирования созданной системы управления кредитным риском.

Теоретическая и практическая значимость. Теоретическая значимость выражается в возможности дальнейшего развития методов и средств применения современных информационных технологий в процессе уменьшения риска кредитования. Практическая значимость заключается в создании и использовании более надежных методик и средств кредитования. В конечном итоге положительный эффект состоит в уменьшении риска кредитования, снижения уровня финансовых потерь и возможность накопления опыта.

Апробация работы. Результаты основных положений диссертации докладывались на следующих конференциях: VII Международная конференция «Математическое моделирование физических, экономических, технических систем и процессов», Ульяновск, УлГУ, 2009; Interactive Systems and Technologies: the Problems of Human-Computer Interaction, Ulyanovsk, ULSTU, 2009.

Личный вклад автора. Постановка задач исследования осуществлена совместно с научным руководителем. Теоретические и практические исследования проведены автором самостоятельно.

Публикации. По теме диссертации опубликовано 6 работ, в том числе 1 в рецензируемом научном журнале, рекомендованном ВАК. Список помещён в конце автореферата.

Структура и объем диссертации. Диссертация состоит из введения, четырех глав, заключения, списка используемой литературы из 115 наименования. Работа содержит 138 страниц текста, 24 рисунка, 6 таблиц.

Похожие диссертации на Снижение уровня банковского риска посредством прецедентного моделирования кредитной ситуации