Содержание к диссертации
Введение
Глава 1. Литературный обзор 8
1.1 Радиационная химия неполярных растворов 8
1.2 Спиновая эволюция ион-радикальной пары в жидкости. Магнитные эффекты 11
1.3 Катион-радикалы алканов и методы их изучения 16
1.3.1 Метод оптического поглощения 16
1.3.2 Катион-радикалы со сверхдиффузионной подвижностью в собственной матрице. Методы, основанные на измерении проводимости образца 17
1.3.3 Ион-радикальные пары в жидком растворе. Методы RYDMR: FDMR и ОД ЭПР 20
1.3.4 Стабилизация катион-радикалов алканов при низких температурах. Методы ЭПР в замороженных матрицах 24
1.3.5 Изучение короткоживущих катион-радикалов в жидком растворе при комнатной температуре. Новые методы с оптическим детектированием: времяразрешенные магнитные эффекты и МАРИ спектроскопия 26
1.4 Реакции ион-радикалов в жидком облучаемом алкане 32
1.5 Депротонирование катион-радикалов алканов 34
1.5.1 Перенос протона с катион-радикалов алканов на нейтральные молекулы алканов в замороженных матрицах 34
1.5.2 Депротонирование катион-радикалов алканов в жидкой фазе 40
1.6 Парамагнитная релаксация катион-радикалов алканов. Трехспиновые системы 42
Постановка задачи 46
Эксперимент 47
Глава 2. Учет неэкспоненциальности кинетики рекомбинации ион-радикальных пар в интерпретации экспериментальных МАРИ спектров 51
Глава 3. Катион-радикалы растворителя в жидких н-алкановых растворах 59
3.1 Идентификация катион-радикала растворителя в МАРИ эксперименте 59
3.2 Реакция ион-молекулярной перезарядки акцептора электронов в алкановом растворе 62
3.3 Распад катион-радикалов растворителя. Экспериментальная оценка собственных времен жизни первичных катион-радикалов н-алканов 65
Глава 4. Изучение химического распада катион-радикалов н-алканов. Введение в систему акцепторов протона - алифатических спиртов 70
4.1 Константы скорости реакции ион-радикалов со спиртами 70
4.2 Возможные каналы реакции со спиртом, отличные от депротонирования катион-радикала растворителя 74
4.3 Канал взаимодействия спирта с анион-радикалом. Исследование методом МАРИ 81
4.4 Канал взаимодействия спирта с катион-радикалом. Исследование методом нормального магнитного эффекта 82
4.5 Влияние спирта на стабильный катион-радикал. Исследование методом МАРИ 86
4.6 Возможность сольватации катион-радикала растворителя вместо депротонирования 89
Глава 5. Взаимодействие ион-радикальной пары с «третьим» спином. Трехспиновые системы в жидком растворе 93
5.1 Оценка характерного времени релаксации ион-радикальной пары за счет взаимодействия с третьим спином. Системы со стабильным радикальным фрагментом в катион-радикале 93
5.2 Введение парамагнитного центра в анион-радикал. Случай сильного обмена 101
5.3 Введение парамагнитного центра в анион-радикал. Случай слабого обмена 104
Выводы 114
Список литературы 116
Приложение 1. Зависимость формы и ширины МАРИ линии от кинетики рекомбинации ион-радикальных пар 135
Приложение 2. Синтез спин-меченых акцепторов заряда Ї44
- Спиновая эволюция ион-радикальной пары в жидкости. Магнитные эффекты
- Учет неэкспоненциальности кинетики рекомбинации ион-радикальных пар в интерпретации экспериментальных МАРИ спектров
- Реакция ион-молекулярной перезарядки акцептора электронов в алкановом растворе
- Возможные каналы реакции со спиртом, отличные от депротонирования катион-радикала растворителя
Введение к работе
В радиационной: химии неполярных растворов первичные катион-радикалы растворителя являются важнейшими объектами изучения. От их свойств зависит ход всех последующих процессов в растворе и состав образующихся продуктов.
Существует множество методов для изучения катион-радикалов, каждый из которых, однако, предъявляет жесткие требования к свойствам изучаемых частиц. Методы, основанные на регистрации спектров оптического поглощения раствора, эффективны в случаях, когда катион-радикалы имеют характерные полосы поглощения, позволяющие уверенно регистрировать кинетику их рекомбинации. Аналогично обстоит дело с методами, основанными на измерении электрической проводимости раствора: они оказались наиболее эффективны для изучения катион-радикалов циклических алканов, которые благодаря свойственному им явлению сверхдиффузионной подвижности можно отличить на фоне других носителей заряда в растворе. Наиболее информативны, конечно, магниторезонансные методы, но и они имеют свои ограничения ~ время жизни изучаемой системы по порядку величины не может быть меньше ста наносекунд - характерного времени переворота спина микроволновым полем спектрометра.
Катион-радикалы н-алканов в жидком растворе при комнатной температуре не удовлетворяют ни одному из этих критериев - они не имеют характерных спектров поглощения, не обладают сверхдиффузионной подвижностью в растворе и имеют времена жизни менее ста наносекунд. Поэтому среди всех первичных
радиационно-генерируемых частиц они являются наименее изученными. Даже методом ОД ЭПР, специально разработанным для регистрации короткоживущих парамагнитных частиц, удалось экспериментально зарегистрировать только неразрешенный сигнал катион-радикала н-пентадекана. В литературе имеются указания на то, что времена жизни катион-радикалов н-алканов должны лежать в диапазоне единиц. - десятков наносекунд, а в качестве основного канала такого быстрого распада предлагается реакция переноса протона с катион-радикала на нейтральную молекулу растворителя.
Данная работа направлена на восполнение этого пробела. Для регистрации катион-радикалов н-алканов и изучения их свойств и реакций был применен относительно новый спин-чувствительный метод — спектроскопия пересечения уровней спин-коррелированных ион-радикальных пар (МАРИ спектроскопия). Основным преимуществом метода является малое время формирования сигнала, определяемое локальными магнитными полями в ион-радикальной паре, которые могут на два порядка превышать типичное значение поля В\ в резонаторе ЭПР спектрометра. Это позволяет наблюдать ион-радикалы с характерными временами жизни вплоть до единиц наносекунд. Ширина линий МАРИ спектра определяется временем жизни спин-коррелированной ион-радикальной пары.
Последнее обстоятельство, при правильном подборе системы,
позволяет экспериментально оценивать собственное (химическое)
время жизни катион-радикалов, а также дает простой способ
регистрации реакций с участием катион-радикалов, влияющих на их
время жизни. В данной работе этим методом была исследована
реакция депротонирования катион-радикалов н-алканов,
инициированная путем введения в систему эффективных акцепторов протона.
Элементарная экспериментальная система МАРИ эксперимента - спин-коррелированная ион-радикальная пара - является удобной базовой системой для конструирования трехспиновых систем. Это позволяет в уже известных экспериментальных условиях, на основе хорошо изученного объекта - ион-радикальной пары - создать новый экспериментальный объект - спиновую триаду. В такой системе реализуется элементарный случай так называемого спинового катализа — влияния внешней, или «третьей», парамагнитной частицы на реакцию двух парамагнитных частиц, образующих единый объект. В данной работе предложен способ создания таких систем путем введения стабильного радикального фрагмента в предшественник одного из партнеров ион-радикальной пары. Подобраны удобные экспериментальные условия и модельные системы для изучения спиновых триад в жидких облучаемых растворах.
Спиновая эволюция ион-радикальной пары в жидкости. Магнитные эффекты
Образовавшиеся при ионизации молекулы растворителя частицы — катион-радикал растворителя и электрон - обладают ненулевым магнитным моментом. Для подавляющего большинства молекул основное электронное состояние является синглетным (полный спин равен нулю), и при ионизации молекулы взаимная ориентация спинов не успевает измениться [27], поэтому образующаяся ион-радикальная пара в начальный момент времени находится в синглетном спиновом состоянии. Наличие в экспериментальном образце ансамбля геминально рекомбинирующих пар, между партнерами которых имеется спиновая корреляция, превращает ион-радикальную пару в основной элементарный объект изучения в спиновой химии облучаемых растворов [28].
Спиновая эволюция в ион-радикальной паре почти полностью изолирована от движения партнеров в растворе. Типичные времена парамагнитной релаксации из-за взаимодействия со средой составляют 10"5— 10 6с [29]. Таким образом, образующиеся в растворе ион-радикальные пары являются спин-коррелированными с момента образования и до момента рекомбинации [30], Это, конечно, относится только к геминальным парам; в диффузионных парах спиновая корреляция отсутствует. За время жизни геминальной ион-радикальной пары ее спиновое состояние может измениться в результате синглет-триплетных переходов, которые происходят из-за разницы g-факторов партнеров пары (Ag-механизм) [31] или из-за сверхтонкого взаимодействия (СТВ) электронных спинов с магнитными ядрами (СТВ-механизм) [32, 33]. Разница -факторов партнеров пары приводит к разным скоростям прецессии их спинов во внешнем магнитном поле, что приводит к синглет-триплетной конверсии. Скорость таких переходов пропорциональна величине магнитного поля и величине Ag, которая для углеводородных радикалов составляет порядка 10 3, поэтому Ag-механизм эффективен только в сильных магнитных полях (порядка килогаусс), способных за время жизни пары до рекомбинации вызвать фазовые осцилляции ее спинового состояния. В слабых магнитных полях, сравнимых с СТВ в ион-радикалах пары, неспаренный электрон находится в создаваемом магнитными ядрами локальном поле, которое может существенно отличаться от внешнего поля по величине и направлению (меняется ось квантования). Поэтому в слабых полях СТВ может индуцировать переворот спина, перемешивая таким образом все четыре (синглетное S и три триплетных То, Т+ и Т.) состояния. Для локальных полей порядка десятков гаусс характерное время переворота спина составляет несколько наносекунд.
Чтобы увеличить время жизни ион-радикальной пары до рекомбинации и иметь больше времени для вмешательства в ее спиновую эволюцию, в раствор обычно добавляют акцептор электронов — вещество с достаточно высоким сродством к электрону (например, гексафторбензол с ЕА = 0,52 эВ), способное образовывать вторичный анион-радикал с молекулярной диффузионной подвижностью: е + А-+А#\ Время рекомбинации такой ион-радикальной пары в алкановом растворе при комнатной температуре увеличивается до десятков наносекунд и становится сравнимо с характерными временами спиновой эволюции, определяемыми величиной сверхтонкого взаимодействия в партнерах пары (как правило, десятки Гаусс). Можно также захватить «дырку» растворителя на акцептор положительного заряда D (донор электронов) - молекулу, потенциал ионизации которой ниже, чем у молекулы растворителя: S + + D — S + D +. Образовавшийся вторичный катион-радикал может отличаться от катион-радикала растворителя собственным временем жизни, временем парамагнитной релаксации, способностью к ион-молекулярной перезарядке и т.д. Спиновое состояние пары не меняется при рекомбинации пары или захвате партнеров на акцепторы, так как все эти процессы можно считать мгновенными по сравнению с периодом прецессии спина в магнитном поле даже в случае больших значений магнитного поля [27]. Таким образом, акцепторы представляют собой удобный инструмент для изменения параметров экспериментальной системы.
Спин-гамильтониан ион-радикальной пары можно представить в виде [2] Здесь первое слагаемое представляет собой энергию неспаренных электронов во внешнем магнитном поле (Зеемановское взаимодействие), а второе и третье слагаемые — сверхтонкое взаимодействие (СТВ) со спинами ядер в каждом из партнеров пары. В гамильтониане опущены слагаемые, отвечающие за анизотропное СТВ и анизотропию g-фактора, которые в жидкости усредняется до нуля из-за быстрого вращения молекул, и диполь-дипольное взаимодействие между неспаренными электронами, которое очень быстро (как 1/г3) спадает с расстоянием между партнерами пары и поэтому пренебрежимо мало даже на характерном радиусе рекомбинации ( 20 А [34]). Также опущено зеемановское взаимодействие ядер с магнитным полем, пренебрежимо малое из-за малой величины ядерного магнетона. Гамильтониан состоит из двух независимых частей, каждая из которых отвечает за движение одного из спинов. Можно заметить, что у этого гамильтониана есть ненулевые матричные элементы между S- и Т-состояниями.
В отсутствие внешнего магнитного поля синглет-триплетные переходы могут выравнивать населенности синглетного и трех триплетных состояний, и в синглетном состоянии в среднем остается V образовавшихся (геминальных) пар. В сильных магнитных полях из-за эффекта Зеемана состояния Т+ и Т. выводятся из резонанса, и в синглетном состоянии остается половина ион-радикальных пар. Таким образом, интенсивность синглет-триплетной конверсии зависит от величины внешнего постоянного магнитного поля - изменяя поле, можно менять населенность различных спиновых состояний.
Учет неэкспоненциальности кинетики рекомбинации ион-радикальных пар в интерпретации экспериментальных МАРИ спектров
В стационарном эксперименте наблюдается интегральная интенсивность рекомбинационной флуоресценции ион-радикальных пар, которая зависит от величины внешнего магнитного поля и пропорциональна свертке населенности p;(t) флуоресцирующего синглетного состояния ион-радикальной пары с кинетикой f(t) рекомбинации ион-радикальных пар: F(H) )Pss (t)f(t)dt s "\р% (t)e "Tf(t)dtt о о где е "т описывает исчезновение спиновой корреляции в ион-радикальной паре (в результате как химических, так и релаксационных процессов) с характерным временем Т. Для описания МАРИ линий наиболее удобным является модель с экспоненциальной кинетикой рекомбинации; где т - характерное время рекомбинации.
В этом случае форма МАРИ линии оказывается лоренцевой, а все процессы, влияющие на время жизни спин-коррелированного состояния ион-радикальной пары, дают аддитивный вклад в кинетику (то есть в полную скорость гибели пар 1/7). Ширина линии обратно пропорциональна времени жизни Т. В таком приближении можно легко извлекать численные оценки из экспериментальных МАРИ линий: изменение какого-либо параметра системы, влияющего на характерное время нарушения спиновой корреляции в паре (например, концентрации добавки, приводящей к распаду одного из партнеров пары) вызывает уширение линии, прямое измерение которого позволяет оценить характерное время связанного с этим параметром процесса.
Отклонение кинетики рекомбинации ион-радикальных пар в реальных экспериментальных системах от экспоненциального закона приводит к отклонению формы наблюдаемой МАРИ линии в нулевом поле от лоренцева контура.
МАРИ линия в нулевом магнитном поле, записанная в виде первой (сверху) и второй (снизу) производной. Гладкой кривой показано моделирование экспериментальной линии с кинетикой рекомбинации /3(/). Для сравнения, пунктирной кривой показана лоренцева линия для того же времени жизни ион-радикальных пар Г= 6,2 не. достаточно хорошо описывается кинетикой рекомбинации, имеющей на больших временах диффузионную асимтотику /0) гш, при этом соотношение ее ширины от пика до пика Д vpp и времени жизни будет тем же, что и для лоренцевой линии AvL№ с точностью до поправочного коэффициента (см. Приложение А).
Оказалось, что наиболее удобно наблюдать отклонение формы линии от лоренцева контура на второй производной МАРИ линии L,(v) по магнитному полю (рис.4 и 5). Критерием здесь может служить отношение R абсолютных величин минимума и максимума второй производной: для лоренцева контура оно равно 4. ЛТ (где X характеризует скорость рекомбинации ион-раидкальных пар), а на рис. 7 - зависимость Av№/Av p от R, Эти графики позволяют в принципе определить скорость распада катион-радикалов 1/Г и скорость геминальной рекомбинации Я ион-радикальных пар по экспериментально измеренным параметрам R и Av№. Чтобы выяснить, насколько велико отклонение формы МАРИ линии от лоренцева контура в реальных экспериментальных системах, была проанализирована форма МАРИ линии в нулевом магнитном поле для ион-радикальных пар КН +/СбРб"", возникающих при рентгеновском облучении раствора гексафторбензола в н-алкане. В такой паре константа СТВ в анион-радикальном партнере А(6Т)=135Тс обеспечивает эффективный СТВ-механизм спиновой эволюции, а спектр катион-радикала обужается за счет перезарядки с нейтральными молекулами растворителя.
Как уже упоминалось, отклонение от лоренцевой формы удобнее наблюдать на второй производной по параметру R. В табл. 1 приведены значения R для четырех н-алканов (н-октана, н-декана3 к-додекана и и-гексадекана), полученные путем моделирования участка первой производной МАРИ линии вблизи нуля кубическим полиномом и путем сглаживания первой производной по методу, описанному в [114], с последующим дифференцированием. В некоторых случаях МАРИ линии записывались непосредственно в виде второй производной на второй гармонике опорной частоты синхронного детектирования. Полученные этими двумя способами величины согласуются с точностью ±0,5.
Отношение, полученное аппроксимацией кубическим полиномом, б отношение, полученное путем сглаживания. экспериментальной кривой с последующим дифференцированием. Приведены также вязкость растворителя при комнатной температуре и ширина Д//рр МАРИ линии в нулевом поле, измеренная от пика до пика первой производной.
Для всех приведенных систем отношение R значительно превышает величину RL = 4 для лоренцевой линии. Таким образом, отличие параметра R от лоренцевой величины следует приписывать влиянию неэкспоненциальной кинетики рекомбинации радиационное генерируемых ион-радикальных пар в неполярных растворах.
Реакция ион-молекулярной перезарядки акцептора электронов в алкановом растворе
Так как линии МАРИ спектров имеют однородную ширину, численные измерения можно проводить на более интенсивной линии в нулевом поле. В ее ширину вносят аддитивный вклад несколько процессов: химический распад и парамагнитная релаксация катион-радикалов растворителя, внутренняя релаксация анион-радикалов гексафторбензола, а также их релаксация вследствие резонансной ион-молекулярной перезарядки с нейтральными молекулами гексафторбензола. Из-за очень большой константы СТВ анион-радикал гексафторбензола во всех изученных системах остается в области медленной перезарядки, дающей аддитивный, линейный по концентрации гексафторбензола вклад в ширину МАРИ линии [56]. На рис.9 показаны зависимости ширины наблюдаемой МАРИ линии в нулевом поле от концентрации гексафторбензола в шести изученных н-алканах. Наклон Штерн-Фольмеровской зависимости, получаемой методом наименьших квадратов, позволяет получить константу скорости реакции ион-молекулярной перезарядки CeFe ", а экстраполяция этой прямой к нулевой концентрации гексафторбензола дает ширину линии, обусловленную всеми остальными процессами (химическим распадом, парамагнитной релаксацией и рекомбинацией партнеров пары).
Как видно из таблицы, экспериментально полученные константы скорости увеличиваются с уменьшением вязкости растворителя, но остаются при этом значительно ниже диффузионно-контролируемого предела, что свидетельствует о наличии кинетического контроля реакции переноса заряда с анион-радикала C6F6 " на нейтральную молекулу CeFe- Это различие становится меньше с увеличением вязкости растворителя. Известно, что в очень вязком сквалане (2,6,10,15,19,23-гексаметилтетракозан) измеренная константа скорости определяется скоростью диффузионных столкновений [56]. 3.3 Распад катион-радикалов растворителя. Экспериментальная оценка собственных времен жизни первичных катион-радикалов н-алканов
Помимо реакции ион-молекулярной перезарядки анион-радикала, ширина МАРИ линии также зависит от собственных характеристик первичного катион-радикала растворителя - скорости химического распада и скорости парамагнитной релаксации. Эти процессы, эффективно укорачивающие время жизни катион-радикала (а следовательно, и ион-радикальной пары), также дают аддитивный вклад в ширину МАРИ линии. Это открывает возможность экспериментально оценить характерные времена этих процессов путем наблюдения изменений в МАРИ спектре при замене дырки растворителя стабильным ароматическим катион-радикалом. На практике это достигается добавлением эффективного акцептора дырок яора-терфенила- н в раствор гексафторбензола в алкане. Так как ароматические катион-радикалы достаточно стабильны и имеют достаточно большие (порядка микросекунд) времена парамагнитной релаксации, их собственные свойства не должны давать вклада в наблюдаемую «однородную» ширину МАРИ линии в нулевом поле. «Неоднородный» вклад катион-радикала идра-терфенила- д в поле 405 Гс пренебрежимо мал, так как второй момент его ЭПР спектра составляет всего 0,9 Гс. Для оценки можно предположить, что такая замена катион-радикального партнера пары никак не отразится на его подвижности в растворе, а значит, и на времени рекомбинации пары, которое также может влиять на ширину наблюдаемой линии.
В таких системах доля ион-радикальных пар с участием катион-радикала /ш/7а-терфенила- /14 относительно невелика (характерное время захвата дырки растворителя при такой концентрации акцептора составляет порядка 100 не), однако благодаря более высокому квантовому выходу флуоресценции лара-терфенила-c/i4 (98% по сравнению с 4% для CeFg) и меньшей ширине линии в наблюдаемом МАРИ спектре преобладающим оказывается сигнал от именно таких ион-радикальных пар (при амплитуде модуляции меньше полуширины узкого сигнала). Как видно из рисЛО, замена катион-радикала растворителя на стабильный катион-радикал пара-терфенила- u приводит к обужению обеих линий, которое наиболее ярко выражено для растворителей с короткой углеродной цепью. В данном эксперименте различия между ион-радикальными парами двух типов (RH VCeFe и «д/7а-терфенил-с/14"+/ QFe ") обусловлены различиями в свойствах катион-радикала, поэтому наблюдаемая разница в ширине МАРИ линий определяется вкладом этих собственных свойств дырки растворителя. Например, для пентана этот вклад, оцениваемый как уменьшение ширины от пика до пика линии в нулевом поле, равен 53 Гс. Данные по шести изученным алканам представлены в табл.2. С ростом длины углеродной цепи ширина МАРИ линии монотонно убывает (с десятков до единиц Гаусс для линии в нулевом поле). Относительная погрешность в определении ширины линии составляет десятки процентов и несколько растет с длиной углеродной цепи.
Возможные каналы реакции со спиртом, отличные от депротонирования катион-радикала растворителя
Тривиальным объяснением того факта, что скорость реакции одинакова для разных спиртов, могла бы быть реакция с водой, которая всегда присутствует в любом спирте. Хотя сродство к протону молекулы воды ниже чем РА использованных здесь спиртов (7,16 эВ по сравнению с 7,82 эВ для метанола), кластеризация молекул воды за счет водородных связей и эффективное образование комплексов (Н20)п с более высокими РА превращает воду в очень эффективный акцептор протонов [81]. Например, в смесях вода/спирт протонируются именно молекулы воды, а не спирта. Известно, что димеры воды захватывают протон с катион-радикала н-бутана и высших алканов в газовой фазе, где обычный бимолекулярный перенос протона термодинамически невозможен [81]. Однако ширина наблюдаемых МАРИ линий растет линейно с абсолютной величиной концентрации спирта, и эта зависимость дает константу скорости реакции, близкую диффузионно-контролируемому пределу в пересчете на концентрацию самого спирта, а не нескольких процентов содержащейся в нем воды. Высокоподвижные дырки растворителя в к-алканах не обнаружены. Если бы наблюдаемый эффект был вызван водой, то линия уширялась бы с ростом концентрации спирта гораздо медленнее. Аналогичные рассуждения исключают и роль других примесей, которые могут содержаться в спиртах, и приводят к выводу, что наблюдаемое в МАРИ эксперименте уширение линии в нулевом поле обязано своим происхождением именно молекулам спирта.
Другим объяснением может быть образование комплекса из молекулы спирта и дырки растворителя с последующим переносом протона с такого комплекса на вторую молекулу спирта. Такой процесс наблюдался в циклоалканах [40]. Подобный же тримолекулярний перенос протона, активируемый образованием водородной связи, также имеет место при депротонировании ароматических катионов спиртами в газовой фазе [123]. Димер спирта имеет намного большее сродство к протону (примерно на 1 эВ), чем одиночная молекула, и может уверенно отрывать протон от катион-радикала алкана в любой из изученных здесь комбинаций алкан / спирт (если газофазные оценки параметров корректны). Этого выигрыша в энергии достаточно, чтобы компенсировать вариации сродства протону разных спиртов. Но в данных системах, где катион-радикалы имеют эффективные времена жизни всего лишь несколько наносекунд (2-5 не для н-гексана в отличие от нескольких микросекунд для циклических алканов), главную роль играют кинетические факторы, а не термодинамические параметры, и две молекулы спирта просто не успевают встретиться с катион-радикалом до его распада в растворе.
До сих пор в качестве объекта воздействия молекул спирта рассматривался только сам катион-радикал растворителя. Однако следует помнить, что в общем случае ширина МАРИ линии определяется временем жизни спин-коррелированной ион-радикальной пары, а не временем жизни катион-радикала как такового. Поэтому нельзя исключать, что молекулы спирта могли бы укорачивать время жизни ион-радикальной пары, реагируя со вторым ее партнером, т.е. электроном, отрывающимся при ионизации молекулы алкана, или анион-радикалом гексафторбензола, образующимся после захвата электрона. В этом случае сродство к протону добавляемого спирта и его отличие от сродства к протону алкильного радикала не будет критическим параметром.
Единственная реакция электронов с полярными молекулами, которая могла бы иметь место в данном случае, это захват электрона присутствующими в растворе кластерами спирта [124], которые начинают появляться в алкановых растворах при концентрациях около 2-3 х 10"2 М [125]. В результате такого захвата происходит замедление «свободного» электрона до молекулярной диффузионной подвижности. О скорости парамагнитной релаксации электрона в кластере практически ничего неизвестно, но, судя по ОД ЭПР сигналам «сольватированного электрона» в сквалане и пентадекане [126], релаксация идет достаточно медленно во временном масштабе МАРИ эксперимента (десятки наносекунд). В результате такого захвата возрастает число электронов, избегающих быстрой рекомбинации со своими материнскими молекулами и живущих так же долго, как и анион-радикалы гексафторбензола. Пара «сольватированный электрон» / «дырка растворителя» не может наблюдаться в эксперименте непосредственно, так как в ней нет люминофора. Однако если такой кластер встретится с молекулой CeFe, он отдаст электрон молекуле акцептора с образованием наблюдаемой ион-радикальной пары. Такой процесс наблюдался для пирена [125]. Таким образом, результатом сольватации электрона в данных системах и в данных экспериментальных условиях будет захват электронов на молекулы C6F6 через кластер из нескольких молекул спирта. Здесь важную роль играет тот факт, что спиновая эволюция в ион-радикальной паре происходит за счет очень больших СТВ в анион-радикале гексафторбензола (по сравнению с которыми СТВ в катион-радикалах алканов очень малы), а значит, она включается только в момент передачи заряда на молекулу гексафторбензола. Такое замедленное включение спиновой эволюции приводит к эффективному сокращению времени, отводимого на спиновую эволюцию в пределах физического времени жизни ион-радикальной пары.