Содержание к диссертации
Введение
Глава 1. Изучение проблемы определения констант равновесия комплексов ионов металлов с органическими лигандами (Обзор литературы) 8
1.1. Методы определения констант равновесия 8
1.1.1. Методы определения произведения растворимости 8
1.1.2. Методы определения констант устойчивости комплексных соединений 11
1.2. Серосодержащие производные пиразола и их практическое применение 16
1.2.1. Синтез тиопроизводных пиразола 17
1.2.2. Физико-химические свойства тиопирина и его гомологов 20
1.2.3. Практическое применение тиопроизводных пиразола 23
Глава 2. Разработка способа определения констант равновесия с использованием физико-химических параметров: предельной степени протекания реакции и коэффициента разбавления 34
2.1. Теоретическое обоснование способа определения констант равновесия 35
2.2. Экспериментальное подтверждение способа определения констант равновесия 49
Глава 3. Изучение равновесий в процессе комплексообразования ионов металлов с тиопирином и его производными 55
3.1. Методика эксперимента, аппаратура, приготовление растворов и их стандартизация 55
3.2. Изучение комплексообразования ионов металлов с тиопирином и его производными потенциометрическим методом 58
3.2.1. Выбор электрохимических систем 59
3.2.2. Влияние кислотности на процесе комплексообразования 68
3.2.3. Определение концентрации иона комплексообразователя при стехиометрическом взаимодействии с лигандом 75
Глава 4. Оценка термодинамических характеристик комплексов ионов металлов с дитиопирилметаном 81
4.1. Определение состава комплексов ионов металлов с дитиопирилметаном 81
4.2. Определение констант устойчивости комплексов дитиопирилметанатов с использованием предельной степени протекания реакции и коэффициента разбавления 89
4.3. Оценка энергии Гиббса процесса комплексообразования дитиопирилметанатов 105
4.4. Оценка реакционной способности серосодержащих производных пиразола 106
4.5. Прогнозирование последовательного взаимодействия ряда ионов металлов с дитиопирилметаном в двухкомпонентных смесях 112
Глава 5. Экспериментальное подтверждение прогноза последовательного взаимодействия ионов металлов с дитиопирилметаном 115
5.1. Изучение взаимного влияния ряда катионов при взаимодействии с дитиопирилметаном 115
5.2. Разработка методик определения сульфидобразующих элементов тиопроизводними пиразола 118
5.2.1. Определение серебра и меди в медно-серебряном сплаве 119
5.2.2. Определение палладия и серебра в серебряно-палладиевом сплаве (ПД-190) 120
6. Заключение 122
Выводы 130
Библиография
- Методы определения констант устойчивости комплексных соединений
- Экспериментальное подтверждение способа определения констант равновесия
- Изучение комплексообразования ионов металлов с тиопирином и его производными потенциометрическим методом
- Оценка энергии Гиббса процесса комплексообразования дитиопирилметанатов
Введение к работе
Актуальность темы исследования. Органические реагенты, среди которых следует отметить серосодержащие соединения, находят все большее применение в различных областях науки - химии, биологии, медицине. Расширению областей применения серосодержащих органических реагентов препятствует отсутствие достоверных сведений о термодинамических характеристиках реакций: произведений растворимости, констант устойчивости и ионизации, степеней протекания реакции, формальных потенциалов окислительно-восстановительных пар.
Наиболее важной термодинамической характеристикой комплекса металла с органическим лигандом является константа устойчивости. Её величину можно использовать для установления взаимосвязи термодинамической устойчивости комплексов с их составом, структурой и реакционной способностью. Существующие способы определения констант равновесия не всегда применимы для той или иной равновесной системы, в частности для серосодержащих производных пиразола. Такие тиопиразолы, как тиопирин, дитиопирилметан и его гомологи уже применяются в фотометрии, для экстракционного выделения мягких катионов или их экстракционно-фотометрического определения. Они обладают рядом преимуществ по сравнению с известными серосодержащими реагентами, например, дитиокарбаминатами, дитизоном, устойчивы при хранении в твердом виде и растворах кислот при отсутствии окислителей, образуют устойчивые комплексы с ионами металлов в кислых средах, что и объясняет их использование как органических реагентов. Возможности тиопиразолов далеко не исчерпаны, но расширению областей их применения препятствует отсутствие количественных характеристик равновесия реакций с ионами металлов.
В связи с этим одной из важных задач является всестороннее физико-химическое изучение взаимодействия ионов металлов с органическими лигандами, разработка новых достоверных, экспрессных способов
5 определения констант равновесия реакций, что и определяет актуальность темы диссертационной работы, направленной на определение констант устойчивости комплексных соединений мягких катионов с серосодержащими производными пиразола.
Одним из наиболее достоверных методов определения констант равновесия является метод потенциометрического титрования, который и был использован нами в работе.
Целью диссертации являлось установление зависимости
термодинамической устойчивости комплексов, на основе определения
констант устойчивости растворимых комплексных соединений
сульфидобразующих ионов металлов с дитиопирилметаном, от природы
металла и лиганда.
Для достижения поставленной цели требовалось решить следующие
щ. задачи:
— теоретически обосновать и экспериментально разработать способ
определения констант равновесия с использованием физико-химических
параметров: степени протекания реакции и коэффициента разбавления;
* —установить условия количественного взаимодействия сульфидобразующих
ионов металлов с тиопиразолами;
— определить константы устойчивости комплексов сульфидобразующих
9 ионов металлов с дитиопирилметаном предложенным способом;
исследовать ряд устойчивости и степени продвижения реакций комплексообразования некоторых дитиопирилметанатов;
построить зависимости реакционной способности серосодержащих производных пиразола от их строения и условий протекания химической реакции;
на основе рассчитанных количественных характеристик комплексов
* показать возможность практического применения индивидуальных реакций и
реакций в двухкомпонентной смеси.
Научная новизна исследований состоит в следующем:
впервые предложен способ определения констант равновесия реакций, базирующийся на теоретической схеме расчета с использованием физико-химических параметров: предельной степени протекания реакции и коэффициента разбавления;
определены значения констант устойчивости растворимых комплексных соединений сульфидобразующих катионов с дитиопирилметаном предложенным способом и рассчитаны энергии Гиббса процесса комплексообразования дитиопирилметанатов;
установлены зависимости констант устойчивости дитиопирилметанатов от параметров жесткости (параметров Клопмана) катионов металлов и от функции квадрата заряда и радиуса ионов металлов, позволяющие оценить реакционную способность дитиопирилметана;
впервые предложены состав и структура комплексов серебра, меди и селена с дитиопирилметаном, основанные на мольных соотношения в точке стехиометричности;
— на основе рассчитанных констант равновесия осуществлен прогноз
последовательности количественного взаимодействия ионов металлов в
смесях различного состава.
Практическое значение работы состоит в том, что на основе экспериментальных данных рассчитаны значения констант устойчивости комплексов сульфидобразующих ионов металлов с дитиопирилметаном с использованием таких физико-химических понятий как предельная степень протекания реакции и коэффициент разбавления. Полученные результаты нашли практическое применение для прогнозирования последовательности взаимодействия ионов металлов с дитиопирилметаном в двухкомпонентных смесях. Параметрами прогнозирования служат степени протекания реакций в двухкомпонентных смесях.
Данные по изучению процессов взаимодействия мягких катионов и дитиопирилметана, указывающие на образование комплексов высокой
7 устойчивости, использованы для разработки методик определения различных элементов.
Показана возможность количественного определения элементов,
находящихся в форме малорастворимых соединений (AgCl) и элементов, не титрующихся ЭДТА (Se, Те, Ag, Au).
На основе использования физико-химических характеристик комплексов разработаны методики анализа производственных объектов посредством потенциометрического титрования ионов меди, серебра, палладия дитиопирилметаном.
На защиту выносятся:
* — теоретически обоснованный и экспериментально разработанный способ
определения констант равновесия на основе таких физико-химических
параметров как предельная степень протекания реакции и коэффициент
ф разбавления;
— совокупность рассчитанных по экспериментальным данным констант
устойчивости комплексов ряда ионов металлов с дитиопирилметаном
предложенным способом, рассчитанные величины энергии Гиббса процесса
комплексообразования ряда дитиопирилметанатов;
— анализ влияния природы индикаторного электрода; влияние природы и
концентрации иона комплексообразователя и лиганда; влияние концентрации
щ ионов водорода на процесс комплексообразования;
— зависимости констант устойчивости дитиопирилметанатов от параметров
жесткости (параметров Клопмана) катионов металлов и от функции квадрата
заряда и радиуса ионов металлов, позволяющие оценить реакционную
способность серосодержащих производных пиразола;
—состав и структура комплексов серебра, меди и селена с дитиопирилметаном на основе мольных соотношений в точке
стехиометричности.
Методы определения констант устойчивости комплексных соединений
Константы устойчивости являются важнейшими характеристиками процесса комплексообразования в растворах. Зная их, можно подтвердить правильность предполагаемого механизма реакции, создать оптимальные условия, обеспечивающие течение процесса в нужном направлении, рассчитать равновесный состав системы для любых заданных условий. Существует достаточное количество способов определения констант устойчивости с помощью физико-химических методов анализа. Наиболее распространенными являются спектрофотометрическии, полярографический, потенциометрический. Метод Толмачева-Комаря (спектрофотометрическии метод определения констант устойчивости комплексов) [31].
К серии стандартных растворов соли катиона-комплексообразователя добавляют реагент, измеряют оптическую плотность. Строят графическую зависимость в координатах (±_\ _І_х10-з. Методом наименьших квадратов рассчитывают уравнение прямой у - а + вх , где коэффициент а равен молярному коэффициенту светопоглощения, коэффициент в равен 9. Константу устойчивости комплекса определяют по формуле: где: h=1-10 г-же/л, I - длина кюветы, п - валентность Ну UJ 0"+1 определяемого элемента.
Метод Бенеши-Гильдебранда [32], применим для молекулярных комплексов состава 1:1, для которых уравнение образования комплекса и константа устойчивости выражаются уравнениями: м + д = мд к = М [М\\Д] Метод Бенеши-Гильдебранда рассматривает частный случай, когда один из компонентов находится в растворе в избытке, т. е. м д и соответственно Потенциометрические методы определения констант устойчивости.
Потенциометрия была и остается наиболее популярным методом определения констант устойчивости благодаря высокой воспроизводимости результатов. Существуют два подхода в определении констант устойчивости потенциометрическим методом. В первом случае для получения каждой экспериментальной точки готовят отдельно растворы с известными общими концентрациями металла и лиганда. Второй метод заключается в титровании одного раствора другим и измерение потенциала после каждого добавления титранта [33].
Если в системе имеется равновесие: M + L ML где M - металл и L - лиганд, а металл М пригоден для изготовления электрода, то составляется концентрационная цепь: М [М] раствор нейтральной соли [M][ML] iM Электродвижущая сила (ЭДС) такой цепи будет равна: RT С Е где См - общая, а [М] - равновесная концентрация металла в nF [М] растворе. Если в системе образуется только один комплекс и его состав известен, то для константы устойчивости справедливо уравнение: о [Щ\с,-рСм+р[М]) п с где CL - общая концентрация лиганда, р количество молей лиганда, приходящихся на один ион металла.
Если состав комплекса неизвестен, то существует несколько приближенных методов расчета константы. Допустим, что: с м - [м ] = с м и CL-L- См + L[M] = CL, тогда tM Iе 1 = /? (, комбинируя уравнение для температуры 25С: Е = — (/lgQ-lg/?;), Pi - может быть найдена графическим методом, Z учитывая, что данное уравнение является линейным в координатах Е, lgCb
Потенциометрический метод определения констант устойчивости в системах со ступенчатым равновесием разработан Леденем [33, 34 С.619-620]. Сущность метода заключается в следующем. Если имеется ступенчатое равновесие: M + L ML М + L t; MLy.! MLY.i + L ± MLy, где у - максимальное число лигандов, способных координироваться вокруг центрального иона. Общая константа устойчивости PY- будет: [ML A [M]-[L]r 3 r Общая концентрация металла M будет равна: См = [М] + T[MLr ] Для дальнейшего расчета Леден вводит некоторые вспомогательные функции: F([L])= /?,[Z] - , IhnF ([L})= 0 , [і] -+ О
Эта константа соответствует точке пересечения прямой с осью х координатами [L], F[L]. Вычисление следующих констант ведется с использованием функции: g ([z J) = F AL v P , P2 - может быть определена графически аналогично. L J
Не всегда для данной системы можно найти электрод, состоящий из металла, который в ионном виде является комплексообразователем. В этом случае используются другие электроды, с помощью которых можно зафиксировать в растворе равновесную концентрацию, например, лиганда. Для этой цели Бьеррум [34 С.618] применял стеклянный электрод, и предложил метод вычисления констант устойчивости для лигандов, обладающих кислотными или основными свойствами.
Экспериментальное подтверждение способа определения констант равновесия
Если шаг коэффициента разбавления (Af) равен 0,1 - 0,05 определение ведется с изменением доверительного интервала во второй значащей цифре (например, ITPAgBr = (5,3 ± 0,х) 10" ). При Af с шагом 0,05 - в третьей значащей цифре (например, ПРАёВг = (5,26 ± 0,0х) 10 ). Это позволяет определить значение Кравн с меньшей погрешностью. Анализ результатов таблиц 2.1, 2.3 и 2.5 свидетельствует о том, что статистическую обработку проводят по трем и по пяти значениям. Погрешность определения зависит и от устойчивости комплекса. Чем меньше значение ПР и больше Р, тем больше погрешность определения.
На практике химику приходится сталкиваться с соединениями различного состава. Вследствие чего предложена модель расчета Кравн для соединений сложного состава в стандартных условиях и для условий, когда приходится брать разные аликвоты и концентрации определяемого компонента и реагента.
Рассмотрим это на примере расчета ПРА ю с использованием коэффициента разбавления. Кривые титрования рассчитаны аналогично расчету AgBr и AgSCN. Далее по кривым титрования выполнен расчет См с учетом разбавления, S и Кравн. Отсюда следует вывод, что предлагаемый способ определения констант равновесия, применим как для бинарных соединений, так и для соединений различного состава. Согласно теоретической модели способа определения Кравн. определена возможная погрешность определения Крин и шаг коэффициента разбавления (f), рассчитаны пороговые молярных концентраций иона металла и реагента не приступая к эксперименту.
Для проверки достоверности, предлагаемый способ апробирован на примере потенциометрического титрования указанных выше систем: бромид-и тиоцианат-ионов азотнокислым серебром.
Выполнение работы включает в себя этапы, отраженные в теоретической модели определения Кравн: 1. Приготовлены растворы титранта и определяемого вещества с одинаковой исходной концентрацией. В зависимости от скачка потенциала индикаторного электрода синхронно разбавлены титрант и титруемое вещество до концентрации, при которой скачок еще фиксируется. 2. При постоянной концентрации реагента, концентрация определяемого вещества изменяется за счет кратного разбавления его раствора до исчезновения скачка потенциала, что соответствует предельной степени протекания реакции. 3. Выполнен расчет коэффициента разбавления (f) - предельной степени химического превращения реакции (Спред) — молярной концентрации определяемого компонента в точке стехиометричности (Ст. с.) — константы равновесия образующегося соединения (Кравн). 4. Титрования проведены в стандартных условиях: р = 1атм; t = (25,0±0,1)С. Постоянную ионную силу раствора поддерживали 0,1 М KN03.
Рассмотрим пример расчета Результаты расчета представлены в табл 2.8, 2.10. Ионная сила (ц) раствора создается за счет диссоциации KSCN и AgN03. В т.е. влияние ионов Ag+ и SCN" на ионную силу раствора исключается за счет связывания их в малорастворимое соединение. Равновесные концентрации ионов [К+] = 7,32 10"4моль-экв/л, [NO3"] = 1,0 10"4моль-экв/л, a [Ag+] = [SCN ] = Vl,0-10"12 = 1,0 Ю-6 моль/л, поэтому ими можно пренебречь.
Значение термодинамического ПР получаем пересчитывая ПРК с учетом ионной силы раствора [29] используя уравнение Васильева: lg ПР т = lg ПР + в 9 - 2 viZi2 - 0,1 (2.17) 1 +1,6-VA Решая уравнение 2.17 для ц, = 0,05 получаем термодинамическое значение произведения растворимости: \ЪПР = lg 1,25 -КГ" + 0-509 - ..1-0,1-0,05 1 + 1,6-V0.05 lg ПР т = 11,97 = ПРТ= 1,05 10"12 Таким образом, термодинамическая константа равновесия тиоционата серебра (ПР) равна 1,05 10"12.
Данные таблиц табл. 2.8-2.11. свидетельствуют о том, что полученные в результате проведенных экспериментов значения nPAgBr и nPAgscN в области исчезновения скачка потенциала сравнимы со справочными величинами ПР значения которых представлены в таблице 2.12.
Нами определено ограничение данного способа, которое заключается в вычислении предельных значений J3 и ПР (для малоустойчивых соединений), при которых способ не применим. Тогда как к достоинствам предложенного способа можно отнести следующее: 1. ПР и р рассчитывают из индивидуальных кривых потенциометрического титрования, что существенно сокращает время затрачиваемое на определение констант равновесия.
Изучение комплексообразования ионов металлов с тиопирином и его производными потенциометрическим методом
Сульфидобразующие ионы металлов образуют с тиопиразолами растворимые окрашенные комплексные соединения. При изучении стехиометрического взаимодействия ионов металлов с тиопирином, дитиопирилметаном, метилдитиопирилметаном и пропилдитиопирилметаном экспериментально выбраны интервалы концентраций иона комплексообразователя, титрованием различных количеств ионов металлов тиопиразолами при равном начальном объеме в титрационом сосуде, 25 мл. В процессе титрований получены хорошо выраженные потенциометрические кривые с резким скачком потенциала индикаторного электрода вблизи т. с. Определение проводили методом введено - найдено, результаты которого представлены в таблицах 3.8 - 3.11.
Из таблиц видно, что при титровании малых концентраций резко увеличивается ошибка определения. Это связано с увеличением объемных ошибок титрования. При титровании разбавленных растворов определяемого элемента, необходимо разбавлять и раствор реагента, что приводит к уменьшению скачка потенциала и увеличению погрешности определения. При титровании больших количеств исследуемого иона металла, видимо, идет нестехиометричное образование комплекса и поэтому ошибка титрования увеличивается.
Как и другие серосодержащие реагенты, ДТМ обладает восстановительными свойствами и может участвовать в окислительно-восстановительных реакциях с ионами металлов. При взаимодействии осмия (+8), золота (+3), марганца (+7), хрома (+6), железа (+3) протекают окислительно-восстановительные реакции с восстановлением перечисленных элементов, некоторые из которых образуют комплексные катионы в их низших степенях окисления.
По мере увеличения молекулярной массы реагентов устойчивость комплексных соединений увеличивается. Сравнение комплексов селена и теллура с каждым реагентом свидетельствует о том, то самыми устойчивыми должны быть соединения этих элементов с ПДТМ [107].
Результаты определения исследуемых ионов металлов обработаны с помощью математической статистики [111]. Определение количественных характеристик равновесных реакций предусматривает изучение состава образующихся соединений.
Исследование состава соединений, образующихся в результате химических реакций с помощью физико-химического анализа можно проводить двумя путями: изменяя концентрацию реагента при постоянной концентрации исследуемого иона или одновременно концентрацию и того и другого, при этом измеряя ЭДС системы [112].
Исследования, связанные с измерением ЭДС, возможно осуществлять также в форме потенциометрических титрований различных количеств ионов металла реагентом с известной концентрацией - такой способ более рационален и менее трудоемок. Нами использован именно этот способ определения состава комплексных соединений. (IV), серебра (I), сурьмы (III), таллия (III) дитиопииррлметаном; палладия (II), селена (IV), серебра (I) и теллура (IV)- тиопирином; меди (II), селена (IV), серебра (I), сурьмы (III) и теллура (IV) метилдитиопирилметаном; селена (IV) и теллура (IV) - пропилдитиопирилметаном наблюдался лишь один скачок потенциала индикаторного электрода. Это указывает на образование единственного соединения определяемого иона с лигандом. Соотношения определяемых элементов и реагентов приведены в таблицах
В соответствии с существующими представлениями о дентатности изучаемых органических реагентов, тиопирин является монодентатным лигандом и взаимодействует с анализируемыми элементами в соотношениях Ag+ : R= 1 : 1; Pd2+ : R= 1 : 2; Se(IV): R= 1 : 3; Te(IV): R= 1 : 3 [109]. При этом образуются соединения предположительно следующего состава [AgR(H20)]+; [PdR2(H20)2]2+; [SeR3(H20)3]4+; [TeR3(H20)3]4+.
Соотношения Ag+(Hg2+, Sn2+) : R = 1 : 1; Sb3+ (Cu2+, Tl3+, Pd2+) : R = 1 : 2; Te(Se)(IV) : R = 1 : 3 при взаимодействии с ДТМ не вызывают сомнений. Для этих ионов характерно координационное число 2, 4 и 6 соответственно, которое и наблюдается в образующихся соединениях, так как ДТМ является бидентатным лигандом. В результате чего он образует с ионами металлов катионные комплексы состава: [1%2(ДТМ)]+; [Те(ДТМ)3]4+; [8е(ДТМ)3 ]4+; [Т1(ДТМ)2]3+; [Н8(ДТМ)]2+; [8Ь(ДТМ)2]3+; [ВІ(ДТМ)2]3+; [Рсі(ДТМ)2]2+; [Sn(flTM)]2+, [Аё(ДТМ)]+
Оценка энергии Гиббса процесса комплексообразования дитиопирилметанатов
Ошибку можно снизить до сотых, регулируя шаг коэффициента разбавления. Чем меньше шаг, тем меньше погрешность. Разность концентрационных и термодинамических констант устойчивости можно объяснить высокой ионной силой создаваемой серной кислотой.
В литературе встречались данные по константам устойчивости комплексов дитиопирилметана только с висмутом и теллуром. Результаты определения Р хорошо согласуются с данными литературы. Полученные нами значения констант устойчивости Р достаточно большие, чтобы были получены метрологические характеристики, свидетельствующие о том, что способ применим.
Для оценки термодинамических характеристик реакций комплексообразования использованы значения констант устойчивости комплексных соединений сульфидообразующих ионов металлов с дитиопирилметаном.
Исходя из полученных значений констант устойчивости комплексов, рассчитаны величины энергии Гиббса [121] процессов комплексообразования по уравнению AGT = -RTlnK, которые являются мерой химического сродства реакции и представлены в табл. 5.1.
Отрицательные величины изменения энергии Гиббса в процессе комплексообразования подтверждают термодинамическую возможность рассматриваемых процессов. Разница AG может быть объяснена на основе различной степени ковалентности и свидетельствует о том, что наиболее устойчивы комплексы дитиопирилметана с многозарядными ионами.
Под реакционной способностью понимают склонность вещества с большей или меньшей скоростью вступать в различные реакции [122]. Существует несколько теорий реакционной способности цели, которых заключаются в том, чтобы найти объяснения, как протекают химические превращения, и пойти далее - предсказать свойства и реакции, которые интересуют химиков. Эти теории основаны на фундаментальных законах, которые могут быть разделены на два типа [123 с. 9-20]: 1) термодинамические и статистические и 2) квантовомеханические.
Термодинамические и статистические законы применяются к группам молекул и потому дают количественное описание физических свойств химических веществ мерой которой служит константа скорости реакции, а для обратимых реакций - константа равновесия.
Оценка реакционной способности в первую очередь предусматривает нахождение реакционных центров как функции молекулярной структуры и качественно оценить реакционную способность соединений.
Тиопирин, дитиопирилметан и его гомологи относятся к классу серосодержащих органических реагентов с функциональной группой C=S способные образовывать внутрикомплексные соединения с ионами металлов дитиопирилметан тиопирин
В зависимости от координационного числа и состава внутренней координационной сферы комплексы могут быть катионными или нейтральными [42].
Реакционно-способной является протонированная форма реагента. Но в молекуле тиопиразолов два реакционных центра: гетероциклический атом азота с неподеленной парой электронов и атом серы, также имеющий неподеленную пару электронов. Из литературы известно [51], что протонизация реагента протекает по атому серы и подтверждено данными ИК-спектров. В кислых средах на электронных спектрах максимум полосы поглощения связи C=S молекулы тиопирина, соответствующий П-71 -переходу, испытывает гипсохромный сдвиг из-за образования Н-связи с атомом серы.
Дитиопирилметаны содержат два гетероцикла, и процесс протонизации протекает по схеме: Такая схема взаимодействия протона с атомом серы, а не с атомом азота с образованием однозарядного катиона реагента согласуется с современными представлениями об электронной структуре тиопроизводных пиразола [44]. В результате монопротонизации ДТМ в кислых растворах и образования прочной водородной связи в - SH S= происходит уменьшение отрицательного заряда на атомах серы и одновременно повышение электроотрицательности азота во втором положении непротонированного гетероцикла.
Ароматическая 6я - электронная система в тиопирине создается смещением седьмого л-электрона на экзоциклический атом серы. Поэтому группа N-C=S гетероциклической молекулы обладает высокой полярностью, что создает в молекуле тиопроизводных дополнительную возможность сі7е рте -сопряжения за счет представления в общую систему вакантных 4d -орбиталей [50]. Поэтому с позиций принципа жестких и мягких кислот и оснований Пирсона (ЖМКО) [122] тиопирин и дитиопирилметаны отнесятся к мягким органическим основаниям (донорам) [123 с. 74-80]. Пирсон установил общий принцип, согласно которому жесткие кислоты лучше координируются с жесткими основаниями и мягкие кислоты с мягкими основаниями.