Введение к работе
Актуальность проблемы
Ощущение и восприятие являются важнейшими процессами для изучения нейробиологических аспектов архитектуры и динамики когнитивной системы, поскольку эти первичные этапы познания более других когнитивных функций доступны прямому естественнонаучному эксперименту (Крик, 1980). Благодаря развитию интегративных методов регистрации и анализа метаболических и электрических реакций мозга на сенсорные стимулы вскрыты существенные рассогласования в амплитудных и временных масштабах между пространством физических стимулов, пространством нейрональных репрезентаций и пространством субъективных образов (Измайлов, Черноризов, 2005; Engel, 2008). В качестве источника рассогласования рассматривается активное участие в нейрональной обработке сенсорного сигнала эндогенных факторов, включающих психофизиологические, мотивационно-эмоциональные и нейрохимические особенности воспринимающего субъекта (Данилова, 1995; Наатанен, 1998; Александров, 2008; Damasio, 1999; Churchland, 2002). Актуально развитие экспериментальных и теоретических подходов, обеспечивающих исследование принципов и механизмов интеграции эндогенных сигналов в структуру субъективных сенсорных образов.
Для оценки индивидуальных и ситуативных характеристик восприятия, памяти, внимания, интеллектуальных ресурсов, эмоционального статуса уже существует целый набор традиционных инструментов. В арсенал психофизиологии входят измерения спектральной структуры ЭЭГ (Федотчев, 1996; Иваницкий, 1999; Каплан, 2003), кардиоритмография (Данилова, 1995), треморометрия (Антонец, 2003). Большие успехи достигнуты в дистанционном контроле эффекторных реакций, таких как движения глаз, мимика, тембр голоса (Величковский, 2006). Эти измерения весьма сложны, требуют уникального аппаратного и программного обеспечения, а также значительных знаний и квалификации для применения. В психологии используется анкетирование, допускающее большой произвол в интерпретации результатов и исключающее режим мониторинга. Общим недостатком этих подходов является использование косвенных данных и эмпирических моделей для оценки когнитивной системы человека. Актуальной задачей является разработка неинвазивных инструментальных методов для прямого измерения режимов обработки информации, обеспечивающих точность, быстродействие, высокую достоверность, легкость интерпретации и мониторинг в широком диапазоне функциональных контекстов. Результатом измерения должно стать цифровое описание субъективного сенсорного пространства для конкретного индивидуума в конкретном функциональном состоянии.
Количественная характеристика преобразования объекта в мультимодальный образ приобретает особое значение в аспекте перехода к новой фазе развития системной нейробиологии. В последнее время появилось множество публикаций, отчетливо обозначивших движение от «стимульного» к «целевому» детерминизму, к утверждению системности и подчеркиванию активности индивида (Александров, 2001; Engel, 2005, 2008; Koch, Tononi, 2008). Традиционные экспериментальные парадигмы, ориентированные на исследование нейронных репрезентаций различных атрибутов объективного сигнала, оказались не эффективны для решения новых задач, поскольку экспериментально доказана вариабельность нейронных репрезентаций и субъективных образов для одного и того же стимула в одном и том же стационарном физическом контексте (Damasio, 1999; Robertson, 1997; Edelman, 2003; Pollen, 2007). Кроме того, стало очевидно, что когнитивный образ сенсорной сцены содержит больше информации, чем исходный сенсорный сигнал, а коллективная динамика нейронных систем обеспечивает разрешение по времени, пространству и амплитуде, недоступное для «медленных» нейронов с широкими настроечными характеристиками (Freeman, 1991). Ключом к выделению нейронных коррелятов, специфичных для конкретного образа, стало сопоставление активности мозга в условиях адекватного восприятия и искаженного
(иллюзии, воображение) под влиянием эндогенных и экзогенных контекстов. Существенным ограничением в развитии знаний является отсутствие инструмента для отбора специфичных для когнитивной обработки откликов из многообразных нейронных и метаболических сигналов, а также отсутствие методов, которые могли бы обеспечить сочетание измерения когнитивных эффектов и регистрацию активности больших нейрональных систем с субклеточным разрешением по пространству и микросекундным по времени разрешением. Это ограничение можно преодолеть благодаря включению в цикл когнитивного исследования симуляторов когнитивных репрезентаций, как успешно продемонстрировал Дж. Эдельман в изучении механизмов формирования нейронных репрезентаций зрительных сигналов (Edelman, 1996; 2008). Парадигма симулятора требует разработки математических моделей, воспроизводящих нейроархитектуру и нейродинамику биологической системы обработки сенсорного сигнала, а также создание методов для измерения динамики субъективных образов в различных эндогенных контекстах. На решение этих задач направлена предлагаемая работа.
Применение симуляционного подхода позволит измерять, контролировать и совершенствовать качество и точность осознания сенсорной информации для конкретного человека в конкретной ситуации; подбирать и оценивать эффективность лекарственных средств в максимальном соответствии с целевыми функциями и, в будущем, заменить эксперименты на животных компьютерными экспериментами на симуляторе; определять оптимальный способ лечения до прямого воздействия на пациента. Эти возможности существенно снизят риски ошибочных и несвоевременных действий и обеспечат оперативную идентификацию измененных состояний сознания.
Цель и задачи исследования
Цель работы - изучить принципы интеграции вегетативных, эмоциональных и нейрохимических факторов в когнитивную обработку сенсорных сигналов для соматосенсорной, слуховой и зрительной систем человека.
Для достижения цели необходимо было решить следующие задачи:
-
Разработать технологии для измерения амплитудно-временных порогов обработки экстероцептивных сигналов;
-
Исследовать взаимодействие экзогенных и эндогенных сигналов при формировании периферического сенсорного кода от совокупности рецепторов кожи;
-
Измерить амплитудно-временные пороги обработки экстероцептивных сигналов в различных эндогенных контекстах, в зависимости от тонуса вегетативной системы, в стрессовой ситуации, при очаговых нарушениях мозгового кровообращения, в условиях психофармакологической модуляции синаптической передачи;
-
Определить некоторые нейрохимические и нейроанатомические корреляты зрительных и слуховых образов;
-
Разработать математические модели, согласованные по входным и выходным параметрам с психофизическими данными и обосновать возможность построения биологоправдоподобного симулятора осознания сенсорных сигналов.
Научная новизна В работе впервые определена и проанализирована система пространственно-временных паттернов электрической активности в афферентных волокнах кожного нерва, кодирующих сенсорную информацию от механорецепторов кожи, и выявлены физические детерминанты температурных сенсорных образов. Разработан комплекс новых инструментальных методов для измерения пороговых характеристик субъективного отображения экстероцептивных сигналов. Впервые определены количественные критерии для идентификации функциональных состояний человека по соотношению пороговых интерауральных задержек при дихотической стимуляции и порогов цветоразличения. Разработаны новые биологоправдоподобные математические модели выделения пространственных и временных признаков в экстероцептивном сигнале,
согласованные по входным и выходным параметрам с индивидуальными психофизическими данными.
Теоретическая и практическая значимость
Работа вносит вклад в изучение взаимодействия эндогенного контекста и экзогенного физического сигнала при формировании разномодальных сенсорных образов. Представлено научное и технологическое обоснование новых принципов измерения когнитивных функций. Предложены гипотезы, позволяющие понять влияние вегетативной, эмоциональной и двигательной систем на осознание сенсорных сигналов. Разработаны неинвазивные инструментальные методы для прямого измерения режимов обработки сенсорных сигналов, обеспечивающие точность, быстродействие, высокую достоверность, легкость интерпретации и мониторинг в широком диапазоне функциональных контекстов.
В то же время, работа имеет выраженную практическую направленность. Созданная технология измерения пороговых характеристик сенсорных каналов человека позволит разработать новые способы диагностики для неврологии и психиатрии, а также технологии оперативного контроля за функциональным состоянием человека в человеко-компьютерных системах.
Положения, выносимые на защиту
-
Основой архитектуры программной среды для прямого измерения пороговых характеристик первичных субъективных образов для любых экстероцептивных сигналов является цикл: генерация физического сигнала - субъективный сенсорный образ - моторное управление значимыми параметрами сигнала - регистрация параметров физического сигнала в процессе управления.
-
Нейрональный код сенсорного сигнала содержит не только информацию о физических свойствах источника сигнала, но и компоненты, отображающие эндогенный и экзогенный контекст, соответствующий моменту действия стимула.
-
Система интегративных первичных кодов в кожном анализаторе обладает специфичностью, адаптивностью и избыточностью. Феномены «Холодовых» и «тепловых» точек, адекватных и парадоксальных температурных ощущений имеют единую механорецепторную природу.
-
Структура субъективного сенсорного пространства специфична для стресса, симпатотонии и ваготонии. Амплитудные и временные пороги восприятия являются индикаторами риска психических и неврологических нарушений.
-
Звуколокализационная функция и функция цветоразличения интегрированы по структурным компонентам и разобщены по нейрохимическим механизмам: для обеих функций проявляется высокая значимость нарушений во фронтальной и теменной областях мозга и низкая значимость нарушений в области первичных проекционных зон; проявляется антагонизм звуколокализационной функции и функции цветоразличения по эффектам прицельной модуляции моноаминергических и ГАМК-ергических систем.
-
Симуляторы восприятия, включающие модуль измерения психофизических характеристик и согласованную с ним по входным и выходным характеристикам математическую модель, обеспечивают воспроизведение индивидуальных и ситуативных характеристик первичной когнитивной обработки сенсорных сигналов
Апробация работы. Материалы работы доложены и обсуждены на 7 съездах, 12 международных, 14 российских и 11 региональных конференциях, в том числе: на XVII (Ростов-на-Дону, 1998), XVIII (Казань, 2001), XX (Москва, 2007) съездах физиологов России; I (Пицунда, Грузия, 2005) и II (Кишинэу, Молдова, 2008) съездах физиологов СНГ; VII всероссийском съезде неврологов (Нижний Новгород, 1995); II съезде биофизиков России (Москва, 1999); на XI, XIII и XIV (Ростов-на-Дону, 1995, 2002, 2005) международных конференциях по нейрокибернетике («Проблемы нейрокибернетики»); международной конференции «Теплорадиометрия в науке и медицине» (С-Петербург,
1998); международной конференции «Биология - наука XXI века» (Пушино-на-Оке, 2001); международном симпозиуме "Topical problems of biophotonics (TPB-2007)" (Нижний Новгород - Москва, 2007); Всероссийской конференции с международным участием «Структурно-функциональные, нейрохимические и иммунохимические закономерности асимметрии и пластичности мозга» (Москва, 2007); III международной конференции по когнитивной науке (Москва, 2008); IX международной конференции «Распознавание образов и анализ изображений: новые информационные технологии» (Нижний Новгород, 2008); международном симпозиуме «Механика в физике и биологии» (Москва, 2006); V, VI, VII, VIII, IX, X и XI (Москва, 2003 - 2009, соответственно) Всероссийских научно-технических конференциях «Нейроинформатика»; VIII и IX (Нижний Новгород, 2006, 2008) Всероссийских конференциях по биомеханике; XVIII сессии Российского акустического общества (Москва, 2006); Всероссийской конференции «Нелинейная динамика в когнитивных исследованиях» (Нижний Новгород, 2009); на научных семинарах в Нижегородской государственной медицинской академии, Нижегородском государственном университете им. Н.И.Лобачевского, Нижегородском государственном педагогическом университете, Институте биофизики клетки РАН (Пущино-на-Оке), Институте теоретической и экспериментальной биофизики РАН (Пущино-на-Оке), Институте прикладной физики РАН (Нижний Новгород); и др.
Публикации. Результаты исследований опубликованы в 88 работах, в числе которых 18 - в изданиях, рекомендованных ВАК, и 20 - в рецензируемых сборниках трудов и журналах. Получено 3 патента РФ (в соавторстве). Исследования проводились при частичной поддержке грантов РФФИ № 08-07-12058-офи, 05-08-33526-а и 08-07-99037-офи.
Объём и структура диссертации. Диссертация состоит из введения, 5 глав, заключения, выводов и списка цитируемой литературы, включающего 1081 источник. Общий объём работы - 509 стр., включая 110 рисунков и 28 таблиц. Логика изложения потребовала незначительного отхода от традиционной структуры диссертационной работы: в обзоре литературы (глава 1) проанализированы общие принципы интеграционных процессов в сенсорной и перцептивной сфере, а в главах, посвященных собственным экспериментальным исследованиям автора (Гл. 2-5), приведены результаты критического анализа литературных данных по конкретным проблемам интеграции - в соматовисцеральной, слуховой и зрительной системах, соответственно. Это привело к некоторому увеличению объёма рукописи, за что автор приносит свои извинения.
Благодарности. Данная работа не была бы выполнена, если бы не действенная поддержка и сотрудничество моих Учителей: А.В.Зевеке, В.А.Антонца, С.Б.Парина, В.И.Щербакова, В.Г.Яхно, И.Я.Клейнбока, Р.Д.Хабибуллина; - а также Коллег: И.В.Нуйдель, Р.А.Тикиджи-Хамбурьяна, В.В.Казакова, Г.И.Малышевой, М.К.Паренко, М.Г.Воловика и других.