Электронная библиотека диссертаций и авторефератов России
dslib.net
Библиотека диссертаций
Навигация
Каталог диссертаций России
Англоязычные диссертации
Диссертации бесплатно
Предстоящие защиты
Рецензии на автореферат
Отчисления авторам
Мой кабинет
Заказы: забрать, оплатить
Мой личный счет
Мой профиль
Мой авторский профиль
Подписки на рассылки



расширенный поиск

Газодинамические особенности оболочек экзопланет класса "горячий юпитер" Ионов Дмитрий Эрикович

Газодинамические особенности оболочек экзопланет класса
<
Газодинамические особенности оболочек экзопланет класса Газодинамические особенности оболочек экзопланет класса Газодинамические особенности оболочек экзопланет класса Газодинамические особенности оболочек экзопланет класса Газодинамические особенности оболочек экзопланет класса Газодинамические особенности оболочек экзопланет класса Газодинамические особенности оболочек экзопланет класса Газодинамические особенности оболочек экзопланет класса Газодинамические особенности оболочек экзопланет класса Газодинамические особенности оболочек экзопланет класса Газодинамические особенности оболочек экзопланет класса Газодинамические особенности оболочек экзопланет класса
>

Диссертация - 480 руб., доставка 10 минут, круглосуточно, без выходных и праздников

Автореферат - бесплатно, доставка 10 минут, круглосуточно, без выходных и праздников

Ионов Дмитрий Эрикович. Газодинамические особенности оболочек экзопланет класса "горячий юпитер": диссертация ... кандидата физико-математических наук: 01.03.02 / Ионов Дмитрий Эрикович;[Место защиты: Институт астрономии].- Москва, 2014.- 110 с.

Содержание к диссертации

Введение

1 Газодинамика оболочек «горячих юпитеров» 19

1.1 Используемая модель 19

1.1.1 Физическая модель 19

1.1.2 Математическая модель 21

1.1.3 Численная модель 23

1.2 Особенности взаимодействия верхних атмосфер «горячих юпитеров» со звездным ветром 27

1.3 Несферическая оболочка экзопланеты WASP-12b 37

2 Оболочки «горячих юпитеров» 45

2.1 Типы оболочек «горячих юпитеров» 45

2.2 Фотометрические проявления несферической оболочки «горячего юпитера» 64

2.3 Спектроскопические проявления несферической оболочки «горячего юпитера» 68

3 Влияние надтепловых фотоэлектронов на свойства атмосфер «горячих юпитеров» 72

3.1 Равновесные модели термосферы «горячего юпитера» . 72

3.2 Процессы ионизации с учетом высокоэнергичных фотоэлектронов 76

3.3 Расчет параметров атмосферы HD 209458b с учетом фотоэлектронов 80

3.4 Определение эффективности нагрева атмосферы планеты HD 209458b 86

Заключение 96

Литература 100

Введение к работе

Актуальность проблемы

Изучение экзопланет — одна из самых интересных тем современной астрофизики. Первые экзопланеты были открыты около двадцати лет назад, с тех пор число известных экзопланет растет экспоненциально. К марту 2014 г. было открыто более 1000 экзопланет в более чем 700 звездных системах. Еще более 2000 объектов содержится в списке кандидатов в экзопланеты, составленным по результатам наблюдений на космическом телескопе Kepler. Ожидается, что в ходе работы будущих наземных и космических телескопов, число открытых экзопланет существенно возрастет уже в ближайшем будущем. Так, запущенный в декабре 2013 г. аппарат Gaia должен открыть свыше 10 тысяч экзопланет.

Из всех известных экзопланет наиболее перспективными для исследований являются транзитные планеты, то есть планеты, для которых угол между плоскостью их орбиты и лучом зрения наблюдателя настолько мал, что мы можем наблюдать прохождение планеты по диску звезды — транзит. Фотометрические и спектроскопические наблюдения транзитов в сочетании с измерением лучевых скоростей звезды позволяют определить массу планеты, ее радиус, а также получить спектры поглощения, из которых можно извлечь информацию о строении, составе и динамике верхних слоев ее атмосферы.

В настоящее время среди транзитных планет наибольший интерес представляют экзопланеты класса «горячий юпитер». Так называются массивные газовые гиганты (с массой порядка массы Юпитера) расположенные в непосредственной близости от звезды, на расстояниях не превышающих 0.1 а.е. [1]. Исторически именно «горячие юпитеры» стали первыми открытыми экзо-планетами [2], поэтому они имеют самую длинную историю изучения среди экзопланет. Первый транзитный «горячий юпитер» — планету HD 209458b — открыли в 1999 году [3]. К марту 2014 г. известно свыше 300 транзитных экзопланет, более половины из них — «горячие юпитеры». Благодаря своим большим размерам, они имеют значительную глубину транзита, а малый период обращения приводит к высокой частоте транзитов. Это делает «горячие юпитеры» объектами, для которых можно получить больше все-

го качественной наблюдательной информации. Наличие мощной атмосферы позволяет извлечь большое количество инофрмации из спектроскопических наблюдений планеты. Именно поэтому «горячие юпитеры» стали объектом исследования в данной работе.

Следует отметить, что даже для наиболее изученных «горячих юпитеров» количество проведенных наблюдений крайне мало. Однако при рассмотрении даже этого ограниченного набора обнаружены аномальные явления, свидетельствующие о наличии трудно объяснимых особенностей у оболочек «горячих юпитеров». Первым таким явлением стало необычно высокое поглощение во время транзита в отдельных спектральных линиях в отличие от поглощения по результатам фотометрии. Такое поглощение было обнаружено в частности у экзопланет: HD 209458b для линий Ly — а, О II, С II, Si III [4, 5, 6], планеты WASP-12b для линий УФ-диапазона [7], планеты HD 189733b для линии Ly — а [8]. Другое необычное явление — это раннее начало транзита, впервые открытое для планеты WASP-12b [7]. Оно заключается в том, что при наблюдении в узких полосах УФ-диапазона транзит начинается значительно раньше по сравнению с данными фотометрии. Кроме этого, согласно результатам наблюдений [6], линии поглощения С II и Si III атмосферы планеты HD 209458b имеют необычную двугорбую форму.

Попытки интерпретации этих явлений предпринимались неоднократно. Однако все предыдущие модели не вполне корректно учитывали газодинамические эффекты, связанные со сверхзвуковым движением планеты в газе звездного ветра. Очевидно, что возникающие при этом явления должны сильно влиять на свойства оболочек планет, а возможно, играть определяющую роль в их состоянии, поэтому задача исследований таких эффектов представляется чрезвычайно актуальной.

Цели работы

Основная цель работы заключается в исследовании процессов, определяющих свойства оболочек «горячих юпитеров». Такими процессами в первую очередь являются газодинамические эффекты и поглощение излучения звезды.

Среди газодинамических эффектов, протекающих в верхних слоях атмосфер «горячих юпитеров» можно выделить два ключевых. Первый из них —

это взаимодействие атмосферы с газом звездного ветра. Так как у типичных «горячих юпитеров» орбитальная скорость превышает скорость звука в газе звездного ветра, то перед планетой формируется отошедшая ударная волна. Кроме этого, из-за небольшого расстояния до звезды многие «горячие юпитеры» близки к заполнению своей полости Роша, и их атмосфера простирается далеко за ее пределы. Это должно приводить к истечению атмосферы через окрестности точек Лагранжа L\ и L^. Взаимодействие истекающих потоков с газом звездного ветра должно сильно усложнить газодинамическую картину течения.

Для интерпретации наблюдений в первую очередь необходимо изучение верхних слоев атмосферы. В силу разреженности вещества в этой области важную роль должны играть процессы, обусловленные появлением нетер-мализованных частиц. Между тем, в опубликованных ранее аэрономических моделях атмосферы нетермализованные частицы во внимание не принимались. Поэтому для оценки их вклада в атмосферные процессы в диссертационной работе исследуется влияние надтепловых фотоэлектронов на процессы ионизации, идущие в термосфере.

Для исследования влияния газодинамических процессов и надтепловых фотоэлектронов на оболочки «горячих юпитеров» в ходе диссертационной работы решались следующие задачи:

проведение численного трехмерного газодинамического моделирования взаимодействия атмосфер «горячих юпитеров» с газом звездного ветра;

определение структуры и динамики оболочек «горячих юпитеров» при разных параметрах атмосферы и звездного ветра;

объяснение в рамках предложенной модели явлений, наблюдающимся у «горячих юпитеров», а именно, раннего начала транзита в УФ-дипапазоне, аномально высокого поглощения в спектральных линиях и двугорбого профиля некоторых линий поглощения;

проведение численного моделирования процессов ионизации в термосфере «горячего юпитера» и оценка роли фотоэлектронов в этих процессах.

Научная новизна

Впервые проведены полноценные трехмерные численные расчеты взаимодействия атмосферы «горячего юпитера» с газом звездного ветра на примере планет WASP-12b и HD 209458b. На основе результатов моделирования обнаружена возможность существования замкнутой несферической газовой оболочки (атмосферы), окружающей типичные «горячие юпитеры». Такая оболочка образуется, когда атмосфера планеты переполняет полость Роша, из-за чего начинается истечение вещества через окрестности точек Лагран-жа, однако истекающие потоки останавливаются динамическим давлением звездного ветра. В результате вокруг планеты формируется обширная оболочка сложной формы, выходящая за пределы полости Роша планеты. При этом такая структура остается стационарной и долгоживущей.

Проведено численное моделирование структуры течения в окрестности планеты HD 209458b в диапазоне параметров ее атмосферы, известным из наблюдений. Впервые показано, что в зависимости от параметров атмосферы и звездного ветра форма и динамика оболочки планеты принципиально меняется. Выделено три типа оболочек: сферическая замкнутая, несферическая замкнутая и открытая. Ключевую роль в разделении этих типов играет образование отошедшей ударной волны в результате сверхзвукового движения планеты в газе звездного ветра. Показано, что если точка лобового столкновения лежит внутри полости Роша, то атмосфера планеты имеет сферическую форму. Если точка лобового столкновения находится за пределами полости Роша, начинается истечение из точек Лагранжа, и форма атмосферы искажается. В том случае, когда образующиеся потоки останавливаются динамическим давлением звездного ветра, вблизи планеты формируется замкнутая несферическая оболочка. Если звездный ветер не может остановить струи из точек Лагранжа, образуется открытая оболочка.

Предложенная модель формирования несферических оболочек позволяет объяснить аномальные явления, наблюдавшиеся для экзопланет HD 209458b и WASP-12b. Ранний транзит у планеты WASP-12b объясняется поглощением в плотном горячем газе, находящемся за ударной волной. Показано, что формирование у планеты WASP-12b несферической оболочки приводит к сдвигу ударной волны от планеты на расстояние в несколько ее радиусов

в направлении ее движения. Появление двугорбых линий в спектре планеты HD 209458b объясняется поглощением света звезды в области за отошедшей ударной волной. В этой области газ движется в противоположные стороны от точки лобового столкновения, что может вызвать появление наблюдаемого профиля линии. Кроме этого, в рамках предложенной модели обширная оболочка должна вызывать аномально высокое поглощение в линиях.

Впервые оценен вклад надтепловых фотоэлектронов в процессы ионизации в термосфере «горячего юпитера». Показано, что скорость ионизации фотоэлектронами сравнима со скоростью фотоионизации, а на небольших высотах превосходит ее. Таким образом, установлено, что надтепловые частицы играют важную роль в физических процессах, идущих в верхних атмосферах «горячих юпитеров».

Практическая значимость

Основные результаты диссертационной работы опубликованы в реферируемых научных изданиях. Полученные результаты хорошо приняты в международном сообществе и активно цитируется в ведущих международных изданиях.

Обнаруженная возможность формирования несферических оболочек меняет подход к интерпретации наблюдений «горячих юпитеров». В настоящее время совместно с различными международными группами наблюдателей экзопланет прорабатываются методики, позволяющие в ходе интерпретации наблюдений учесть реальную форму оболочек «горячих юпитеров». Кроме того, в ноябре 2013 г. на Космическом телескопе им. Хаббла проведены наблюдения экзопланеты WASP-12b с целью определения вохможности существования несферической оболочки.

Апробация результатов

Соискатель имеет 8 опубликованных работ, из них по теме диссертации опубликовано 8 научных работ общим объёмом 3,5 печатных листов, в том числе 2 статьи в научных журналах и изданиях, которые включены в перечень российских рецензируемых научных журналов и изданий для опубликования

основных научных результатов диссертаций, а также 1 работа в зарубежных научных изданиях; 5 работ опубликованы в материалах всероссийских и международных конференций и симпозиумов.

Результаты диссертации были представлены на следующих конференциях: IAU Symposium 282 (г. Татранска Ломница, Словакия, 2011); Астрофизика высоких энергий — 2011 (ИКИ РАН, г. Москва, 2011); Астрономия в эпоху информационного взрыва (ГАИШ МГУ, г. Москва, 2012); 39th COSPAR Scientific Assembly (Майсур, Индия, 2012); IAU XXVIII General Assembly (Пекин, Китай, 2012); Astronum - 2012 (Каилуа, США, 2012); Всероссийская астрономическая конференция - 2013 (Санкт-Петербург, 2013). Кроме того, результаты работы докладывались на ежегодных студенческих конференциях «Физика Космоса» в Коуровской Обсерватории УрФУ (в 2012, 2013 и 2014 гг.), семинаре Института астрономии РАН, семинаре ГАИШ МГУ, а также семинарах Международного института космических исследований — ISSI (г. Берн, Швейцария, 2012, 2013 г).

Личный вклад автора

В ходе выполнения диссертационной работы автор обеспечивал проведение выичслений, написал несколько модулей к использованным программам, принимал активное частие в обсуждении постановки задачи и полученных результатов.

В работах, результаты которых представленах в главе 1 и 2, участие автора в постановке задачи и формулировании выводов равное с другими соавторами. Кроме того, автор совершил частичную модификацию вычислительного кода и провел большую часть расчетов.

В исследованиях, результаты которых представлены в главе 3, автор модифицировал вычислительный код (написал модули расчета концентрации компонентов атмосферы и модуль расчета эффективности нагрева атмосферы), провел расчеты, а также активно участвовал в формулировании выводов.

Я

Объем и структура диссертации

Особенности взаимодействия верхних атмосфер «горячих юпитеров» со звездным ветром

Важной особенностью взаимодействия планет с межпланетной средой является сверхзвуковая скорость планет в звездном ветре. Попробуем оценить числа Маха для планет на разных орбитальных радиусах, обращающихся у звезды сходной с Солнцем. Будем считать, что параметры звездного ветра этой звезды соответствуют параметрам солнечного ветра, указанным в [17]. Тогда зависимость скорости звука, орбитальной скорости планеты и скорости звездного ветра от расстояния до звезды будут такими, как показано на Рис. 1.1. Видно, что на всех орбитальных радиусах движение имеет сверхзвуковой характер. На малых орбитальных радиусах сам поток звездного ветра является дозвуковым, но за счет орбитальной скорости планеты ее движение будет сверхзвуковым.

При движении со сверхзвуковой скоростью гравитирующего тела или тела с атмосферой в газовой среде образуется отошедшая ударная волна (ОУВ). Как отмечено в работе [28], при движении планеты в среде звездного ветра вблизи нее должна появляться газодинамическая структура из самой ударной волны и контактного разрыва за ней (рис. 1.2). Вещество звездного ветра проходит через ударную волну, нагреваясь и сжимаясь в соответствие с ударной адиабатой, после чего обтекает контактный разрыв, за которым находится вещество атмосферы. Смешение газа атмосферы и звездного ветра может происходить из-за неустойчивости контактного разрыва.

Определить положение и форму контактного разрыва возможно, вое пользовавшись записанным для него законом сохранения импульса [29]: где pi,p2 плотности, г і,г 2 скорости, Р\,Р2 - давления с обеих сторон разрыва. Зависимость давления газа атмосферы от расстояния до центра планеты можно вычислить исходя из (1.1) и уравнения идеального газа.

Подставляя в левую часть уравнения значения плотности и давления атмосферы, а в правую часть того же уравнения значения плотности, давления и скорости набегающего на атмосферу газа звездного ветра, можно получить уравнение, аналогичное уравнению для определения формы атмосферы из [28]:

Patm{R) = pwVw2COS2(n, Vw) + pw , (1.18) где pw — плотность ветра, vw — скорость ветра, — давление ветра,

Форма контактного разрыва и ударной волны вблизи «горячего юпитера» согласно аналитический закономерностям.

Patm(R) — давление ветра на радиусе R, п — вектор нормали к поверхности атмосферы. Уравнение (1.18) позволяет получить форму наветренной части атмосферы, непосредственно взаимодействующей со звездным ветром. Точка лобового столкновения (ТЛС), в которой cos(n,vw) = 1, находится наиболее близко к центру планеты.

Если плотность газа атмосферы описывается формулой (1.1) и уравнением состояния идеального газа, то это выражение будет записываться как:

Отсюда можно выразить расстояние от контактного разрыва в точке лобового столкновения до центра планеты в явном виде:

Ориентация контактного разрыва и положение ТЛС будет опреде золяться соотношением между орбитальной скоростью планеты и скоростью звездного ветра. Тангенс угла между направлением движения планеты и осью симметрии отошедшей ударной волны равен: где vw — скорость звездного ветра, уогь — орбитальная скорость планеты. Очевидно, что этот угол может принимать значения от 0 (при отсутствии звездного ветра) до 90 (при vw УОГЬ). Зависимость тангенса этого угла от радиуса для Солнца показана на рис. 1.3.

Фронт ударной волны находится на некотором расстоянии от контактного разрыва. Расстояние между ними в точке лобового столкновения обозначается А и называется отходом волны. Как показано в [30], как отход ударной волны, так и форму ее поверхности нельзя определить из аналитических закономерностей, однако существуют полуэмпирические уравнения для расчета ее положения и формы [30]. Для расчета отхода волны существует несколько эмпирических формул.

М2 где бо — затупленность поверхности ударной волны, Rbs — радиус кривизны ударной волны, rba — расстояние до ударной волны в точке лобового столкновения, равный rbs = RHCP + Д В свою очередь, радиус кривизны ударной волны определяется выражением

. Тангенс угла между направлением движения планеты и осью симметрии волны (пунктирая кривая) и число Маха (сплошная кривая) на разных орбитальных радиусах для Солнца. В соответствие с приведенными уравнениями контактный разрыв и ударная волна будут иметь форму, показанную на рис. 1.2. Нужно отметить, что уравнение (1.19), описывающее форму контактного разрыва, справедливо только для наветренной части атмосферы. Поэтому на Рис. 1.2 подветренная часть атмосферы планеты имеет сферическую форму. Между ударной волной и контактным разрывом потоки растекаются в обе стороны от ТЛС. Изменение плотности в этом пространстве не описывается аналитически, однако его можно описать качественно. В первую очередь плотность будет определяться скачком плотности на фронте ударной волны. Как известно из [29], отношение плотностей после и перед ударной волной определяется уравнением:

При стремлении отношение плотностей стремится к выражению , что для одноатомного газа будет равно 4. Число Маха в этом уравне 7-1 нии рассчитывается по компоненте скорости, нормальной к фронту ударной волны. Поскольку угол между направлением набегающего потока и фронтом волны максимален в ТЛС и равен 90, а по мере удаления от ТЛС уменьшается, то и плотность за ударной волной также будет тем ниже, чем дальше данная точка отстоит от ТЛС.

Позади планеты при ее сверхзвуковом движении будет формироваться волна разрежения и турбулентный след.

За счет малого орбитального радиуса «горячие юпитеры» движутся в среде звездного ветра, имеющую большую плотность и температуру по сравнению со звездным ветром вблизи любой из планет Солнечной системы. Далее, как видно из рис. 1.3, чем ближе планета к своей звезде, тем больше у нее будет число Маха, а значит, тем выше будет интенсивность ее ОУВ. Кроме того, размер той части ОУВ, где плотность максимальна, определяется в первом приближении размером планеты. Таким образом, ОУВ, образующиеся вблизи «горячих юпитеров» будут отличаться от ударных волн у экзопланет других типов следующими особенностями: большим размером, высокой температурой за фронтом ударной волны и большой плотностью вещества в этой области. Благодаря этому, ОУВ «горячих юпитеров» лучше подходят для наблюдения по сравнению с другими экзопланетами.

Фотометрические проявления несферической оболочки «горячего юпитера»

В 2009 г. группа Фоссати [7] провела наблюдения планеты WASP-12b с помощью космического телескопа им. Хаббла. Планета исследовалась в диапазоне 2540-2810А, в котором было выбрано три полосы шириной 40А: NUVA (A), NUVB (A), NUVC (А). Полученные кривые блеска показаны на рис. 2.11. Точками на рисунке показаны результаты измерений в полосах УФ-диапазона. Сплошной линией показана кривая блеска планеты, вычисленная по уже известным орбитальным и физическим характеристикам планеты.

Анализ полученных кривых блеска показал, что транзит в полосах NUVA и NUVC существенно глубже чем в видимом диапазоне. Кроме того, было обнаружено явление раннего начало транзита. Оно заключается в том, что во всех трех полосах транзит начинается на 50 мин раньше по сравнению с видимым диапазоном. Это свидетельствует о наличии плотного горячего вещества, движущегося перед планетой на расстоянии равном

Первое объяснение основано на массообмене между атмосферой планеты и звездой [9, 31]. Действительно,как было показано в главе 1, атмосфера WASP-12b сильно переполняет свою полость Роша, что должно приводить к началу истечений из точек Лагранжа. Как уже отмечалось в параграфе 1.3, это должно приводить к возникновению аккреционного диска вокруг звезды. Если аккреционный диск осесимметричен, то он никак не будет проявляться при транзите. Однако в том месте, где струя взаимодействует с диском, формируется протяженная ударная волна (см., напр., [24,38]). Эта область будет иметь повышенную температуру, а значит, может внести вклад в затмение света звезды в УФ-диапазоне во время транзита, что должно наблюдаться в кривых блеска. Эта гипотеза излагалась в работах [9] и [31]. Используя ее, авторы предположили, что струя из L\ и/или область взаимодействия струи с аккреционным диском могут вызвать раннее начало транзита. Однако, как показано в параграфе 1.2, неконтролируемый отток вещества через точки Лагранжа должен приводить к быстрому исчезновению всей атмосферы планеты. Следовательно, это рассмотрение, несмотря на свою изящность, не позволяет адекватно объяснить происходящие в системе WASP-12 процессы.

Второе возможное объяснение — оптически толстая область за ОУВ, образующейся вблизи планеты. Образование ОУВ может быть вызвано магнитным полем планеты [10,42,46]. Именно такова природа ОУВ вблизи Юпитера. С другой стороны, образование ОУВ может быть обусловлено и одними только газодинамическими причинами [47].

В работе [42] авторы оценили, что для смещения волны на наблюдаемое расстояние в 4 -5Лр/ необходимо собственное поле планеты В 24 Гс. Однако, как отмечалось в параграфе 1.1.1, наличие таких сильных полей у планет класса «горячих юпитеров»,и, в частности, у планеты WASP-12Ь крайне маловероятно. Кроме того, для рассматриваемой конфигурации профиль плотности должен иметь следующий вид: резкий скачок за ударной волной, затем столь же резкое падение от магнитопаузы (4 — 5Rpi) вплоть до уровня экзобазы (1.55Rpi), и плавный рост в атмосфере планеты. Это означает, что в наблюдаемой кривой блеска должна быть видна ступенька: падение светимости после раннего ингресса должно смениться областью постоянной светимости вплоть до момента начала затмения собственно атмосферой планеты. Подобная кривая блеска рассчитана в работе [48]. Она плохо согласуется с наблюдаемой авторами [7] кривой блеска в полосе NUVA (рис. 2.11).

В работе [47] мы предположили, что у «горячих юпитеров» нет магнитного поля и отошедшая волна формируется на, собственно, атмосфере. Численные расчеты показали, что подобный сценарий возможен, однако в предложенной модели возникла проблема смещения отошедшей ударной волны на наблюдаемые расстояния. Действительно, согласно простым аналитическим оценкам [28] расстояние от контактного разрыва до центра планеты для WASP-12b не должно превышать 1.88Rpi, а фронт волны должен находиться на расстоянии 2.2SRpi от ее центра [30], т.е. в 2 раза ближе к планете, чем следует из наблюдений. Таким образом, в типичном для WASP-12b диапазоне параметров, в рамках и этой модели невозможно объяснить имеющиеся наблюдения.

Для объяснения наблюдений [7] рассмотрим результаты моделирования системы WASP-12, представленные в главе 1. Как показано на рис. ? из-за формирования в системе несферической оболочки перед планетой, на расстоянии нескольких ее радиусов в проекции на диск звезды, будет находиться вещество звездного ветра, сжатое ударной волной. Более того, в параграфе 2.1 и на рис. 2.5 показано, что согласно теоретическим соображениям точка остановки струи из точки L\ должна быть именно там, где находится горячее вещество, вызывающее раннее начало транзита. Таким образом, в нашей модели ранний транзит вызывается поглощением света горячим веществом за фронтом ударной волны.

Процессы ионизации с учетом высокоэнергичных фотоэлектронов

Как показано в работе [12], концентрации атомов кислорода и ионов углерода, наблюдавшихся в окрестности экзопланеты [5], более чем на порядок ниже, чем концентрации водорода в верхней атмосфере HD209458b. Поэтому, в данной модели ионизации термосферы рассматриваются лишь основные компоненты термосферы HD209458b.

Жесткое УФ излучение звезды поглощается атмосферным газом экзопланеты HD209458b и сопровождается возбуждением, диссоциацией и ионизацией атмосферных компонент, а также образованием потока фотоэлектронов с энергиями, достаточными для последующего возбуждения и ионизации атомарного и молекулярного водорода. Энергия ионизирующих фотонов обычно превышает потенциал ионизации (ІРщ=15.43 эВ, 1Рн =13.6 эВ, и ІРне =24.59 эВ) и ее избыток идет в кинетическую энергию электронов и на возбуждение образующегося иона. Следовательно, скорость образования фотоэлектронов на заданной высоте z в верхней атмосфере определяется стандартным выражением где оптическая толщина г равна пк — числовая плотность нейтральной компоненты, а1к, а% — это зависящие от длины волны сечения ионизации и поглощения соответственно. В выражении (3.2) использованы относительные выходы &(А, Ekj) и потенциалы ионизации Ek,i возбужденных электронных состояний иона. Энергия образующегося фотоэлектрона равна Е = Е\ — Ек,и гДе Р\ энергия фотона, а Xk — это длина волны для потенциала ионизации нейтральной компоненты к. Наконец, /оо(А) — это внеатмосферный поток звездного излучения на длине волны А. В приведенных ниже расчетах использовалась модель потока солнечного излучения в интервале длин волн 1-115 нм для условий умеренной солнечной активности из работы [60]. Данный поток излучения был масштабирован для орбиты с большой полуосью 0.045 а.е. экзопланеты HD209458b. Из этой же работы выбраны относительные выходы возбужденных электронных состояний нейтральных и ионизованных продуктов фотолиза, сечения ионизации и полного поглощения для основных атмосферных КОМПОНеНТ - ІІ2, Не и Н.

Если в выражении (3.2) убрать суммирование по компонентам, то получим выражение для дифференциальных парциальных скоростей ионизации. Интегрирование по спектру излучения позволяет получить парциальные скорости ионизации как по процессам ионизации (3.1), так и по основным компонентам.

Для расчета переноса и столкновительной кинетики фотоэлектронов в верхней атмосфере HD 209458b использовалась модель Монте Карло [61], адаптированная к водородным атмосферам. В дневной верхней атмосфере HD 209458b электроны с высокими энергиями образуются при фотоионизации основных атмосферных компонент жестким УФ и мягким рентгеновским излучениями звезды. Образующиеся электроны переносятся в верхней атмосфере, где теряют свою кинетическую энергию в упругих, неупругих и ионизационных столкновениях с основными компонентами окружающего атмосферного газа где Е и Е — кинетические энергии первичного электрона до и после столкновения; X , Х+ — атмосферные компоненты в возбужденном и ионизованном состояниях. Здесь Es — энергия образующегося в столкновении ионизации вторичного электрона, выбираемая в соответствии с процедурой, описанной в работах [62-64]. Фотоэлектроны со сверхтепловыми энергиями теряют свою избыточную кинетическую энергию в столкновениях (3.4) с окружающим атмосферным газом. Соответственно, кинетика и перенос фотоэлектронов описывается при помощи уравнения Больцмана: гДе fe{y,v) и /м( і ) являются функциями распределения по скоростям для электронов и компонент окружающего атмосферного газа, соответственно. Перенос электронов в силовом поле s планеты описывается в левой части уравнения. В правой части кинетического уравнения членQe,Photo описывает скорость образования свежих электронов за счет фотоионизации, а член Qe,secondary — образование вторичных электронов при ионизации фотоэлектронами. Интегралы столкновений для упругих и неупругих взаимодействий электронов с окружающим атмосферным газом J(/e, /м) записываются в стандартном виде в предположении, что атмосферный газ характеризуется локально равновесным распределением Максвелла по скоростям.

Детальное описание реализации модели Монте-Карло переноса фотоэлектронов в планетной атмосфере приведено в работах [11,61]. Отметим лишь, что в данной реализации использовались экспериментальные и расчетные данные для сечений и распределений углов рассеяния в упругих, неупругих и ионизационных столкновениях электронов с Н2,Не и Н выбранные из следующих источников: (а) для столкновений е + Н2 из базы данных AMDIS (https://dbshino.nfs.ac.jp) и работы [65]; (б) для столкновений из базы данных NIST (http://physics.nist.gov/PhysRefData/Ionization/) и работ [63,66]. Парциальные и полные скорости ионизации потоком фотоэлектронов задаются по стандартным формулам на основе рассчитанных функций распределения fe(r,v) электронов в термосфере.

Расчет параметров атмосферы HD 209458b с учетом фотоэлектронов

Расчеты проводились в переходной области верхней атмосферы HD209458b в интервале высот 1.04 - 1.16Rpi Распределение основных нейтральных компонент взято из модели [13] в соответствии с данными, приведенными на рис. 3.1. На рис. 3.4 показаны зависимости скорости ионизации, полученные из расчета Монте-Карло, для разных атмосфер в зависимости от высоты. На верхней панели показана скорость фотоионизации, а на нижней ионизации фотоэлектронами. И в том, и в другом случае скорость ионизации становится максимальной на высоте примерно 1.06 Rpi, что соответствует нижней термосфере. Видно, что скорость вторичной ионизации сравнима со скоростью фотоионизации, а значит, пренебрежениє фотоэлектронами может существенно исказить конечные результаты. Максимальная скорость ионизации в атмосфере RY04 превышает аналогичную величину в атмосфере GM07 за счет более высокой концентрации молекул водорода.

На рис. 3.5 показаны скорости каждого канала ионизации в зависимости от высоты для атмосферной модели GM07. На рис. 3.6 приведены аналогичные кривые для атмосферной модели RY04. Исходя из структуры атмосфер понятно, что в нижней термосфере наиболее активно идет ионизация молекулярного водорода. Можно заметить, что скорость ионизации атомарного водорода в обеих атмосферах преобладает в тех зонах, где он является главным компонентом. Среди каналов ионизации молекулярного водорода главным на всех высотах остается диссоциативная ионизация.

На рис. 3.7 показаны результаты расчета концентрации электронов в обеих атмосферах с учетом и без учета фотоэлектронов. Хорошо заметно, что включение фотоэлектронов существенно меняет химический состав атмосферы для обеих моделей. На этом графике мы сравнили наши результаты с результатами работы [53], в которой также рассчитана концентрация электронов в атмосфере HD209458b, но использовалась при этом другая модель атмосферы и не учитывалась ионизация фотоэлектронами. Кроме этого, использованный в работе [53] поток УФ излучения характеризуется несколько меньшей интенсивностью, чем поток в данной статье. Возможно, именно этим можно объяснить то, что данные работы [53] показывают систематически меньшую концентрацию по сравнению с нашими результатами.

На рис. 3.8 изображена степень ионизации на разных высотах. Видно, что вне зависимости от модели атмосферы на данных радиусах атмосфера ионизована незначительно. Тем не менее, на всем протяжении исследуемого пространства степень ионизации растет на порядок. Видно, что учет фотоэлектронов повышает степень ионизации на всех высотах в разной степени.

На низких высотах отношение степеней ионизации, рассчитанных с учетом фотоэлектронов и без их учета, достигает двойки. Изменения такого порядка могут оказать существенное влияние на тип оболочки планеты.

Таким образом, в этой главе показана оценка вклада процессов диссоциации и ионизации звездным УФ излучением и сопутствующим потоком фотоэлектронов в формирование протяженных ионосфер у внесолнечных планет-гигантов. В отличие от моделей других авторов впервые рассчитаны скорости ионизации сопутствующим потоком фотоэлектронов. Установлено, что в отличие от широко используемой параметризации [67,68] вклада фотоэлектронов скорость вторичной ионизации существенно зависит от высоты и в нижних слоях термосферы приближается к значениям скорости фотоионизации. Проведенные расчеты скорости ионизации термосферы внесолнечной планеты-гиганта являются необходимым звеном при построении аэрономической модели и оценке скорости потери атмосферы и распределения вещества для «горячих юпитеров» на близких к родительской звезде орбитах [41].

Следующим этапом в построении аэрономической модели является расчет энергетического баланса в термосфере. Этот баланс в первую очередь определяется степенью нагрева термосферы излучением звезды. Для оценки этого нагрева вводится параметр эффективности нагрева атмосферы. Чтобы продемонстрировать методику его расчета, подробно рассмотрим процесс поглощения энергии излучения в верхней атмосфере.

Как уже показано в параграфе 3.2 УФ-излучение поглощается в ходе реакций (3.1). При этом часть энергии поглощенного кванта, равная энергии ионизации или диссоциации, переходит во внутреннюю энергию вещества, а оставшаяся часть преобразуется в кинетическую энергию про дуктов реакции, причем в большей степени — в кинетическую энергию электронов. Если энергия родившегося фотоэлектрона достаточно велика, он может вступать во вторичные реакции ионизации и возбуждения с компонентами атмосферы. При этом будет расходоваться его первоначальная кинетическая энергия. Другой канал расходования начальной энергии фотоэлектронов — это упругие столкновения, в результате которых его энергия переходит в тепло. Таким образом, частично энергия фотоэлектронов переходит во внутреннюю энергию, а частично — идет на нагрев атмосферы.

Обозначим как Whv — энергию УФ-излучения, поглощенного за единицу времени в единице объема, Wpe — начальную кинетическую энергию фотоэлектронов, появившихся за единицу времени в единице объема, WT — энергию электронов, за единицу времени переходящую в тепло в единице объема. Все три величины локально рассчитываются в каждой ячейке по результатам проведенного моделирования. Тогда общая эффективность нагрева будет рассчитываться по формуле

В большей части работ, посвященных оттоку атмосферы [56, 69-79] эффективность нагрева принимается равной 1.

Недавно в работе [80] при исследовании испарения водородной атмосферы планеты KIC 12557548b было высказано предположение, что эффективность нагрева равна 0.5. В работе [1] общая эффективность нагрева была произвольно выбрана щ = 0.32. В более детальных исследованиях, таких как [13], показано, что эффективность нагрева колеблется в диапазоне 0.4-0.6 на расстояниях 1.03-1.05_Rpi, находится вблизи 0.2 при 1.4гр1 и принимает значение 0.15 на расстояниях 1ARP\. Руководствуясь этими исследованиями, некоторые авторы предполагают, что эта величина примерно равна 0.3. Это согласуется с результатами исследования [81], проведенного для истечения водородной атмосферы ранней Земли. Эти значения близки к оценкам [82] в 0.15-0.3, полученными при исследовании гидродинамического оттока водорода для верхней атмосферы ранней Венеры.

Похожие диссертации на Газодинамические особенности оболочек экзопланет класса "горячий юпитер"