Введение к работе
Актуальность темы. С точки зрения как фундаментальной науки, так и практического использования нитевидные кристаллы являются одними из наиболее перспективных материалов с уникальным комплексом свойств. На протяжении последних десятилетий значительные усилия были направлены на получение и исследование новых нитевидных кристаллических материалов (вискеров). Вискеры, как правило, имеют совершенное, почти идеальное строение, что исключает обычные дислокационные механизмы пластической деформации и приближает прочность вискеров к теоретическому для данного вещества порогу. В результате вискерам присущи уникальные гибкость, коррозионная стойкость и многократное усиление анизотропии свойств. Представляя собой одномерную кристаллическую систему, они могут найти широкий диапазон применений - от упрочняющих волокон до устройств наноэлектроники.
Несмотря на то, что нитевидные кристаллы известны более полувека, вискеры технически используются достаточно однобоко - в основном, как армирующие волокна (углеродные волокна, базальт, SiC, А1203), т.е. для создания конструкционных композитных материалов с улучшенными механическими свойствами. В то же время до сих пор не существует воспроизводимых и относительно дешевых способов получения вискеров с желаемыми функциональными характеристиками, например, нелинейными магнитными и/или электрическими свойствами, ионной проводимостью, что явилось бы чрезвычайно важным шагом в области создания принципиально новых типов кристаллических материалов. В большинстве случаев это связано с тем, что, к сожалению, не решена задача выращивания «усов» многокомпонентных фаз. С другой стороны, неудачи в получении сложных фаз в виде вискеров привели к неоправданному сужению ареала систем, использующихся для получения вискеров. Таким образом, подобный необычный класс кристаллов интересен не только с точки зрения исследования механизма их образования в каждой конкретной системе, но и из-за своих специфических структурных, физико-химических и функциональных характеристик, что делает весьма актуальными любые новые исследования в области нитевидных кристаллов.
Одной из наиболее известных химических систем, обладающих низкой стоимостью и малой токсичностью, является система Мп-О. Кристаллохимия оксидов марганца достаточно сложна, разнообразна, высоко чувствительна к химическому составу и условиям получения многокомпонентных фаз, что делает материалы на их основе уникальными объектами исследования.
Основной целью настоящей работы явилась разработка методик получения фазы ВабМп24048 с туннельной кристаллической структурой в виде нитевидных кристаллов, а также детальное исследование физико-химических, структурных, морфологических особенностей, электрохимических и каталитических свойств манганитных вискеров.
Для достижения указанной цели решались следующие задачи:
- разработка новых методов выращивания нитевидных кристаллов с заданным химическим
составом и кристаллической структурой;
анализ химической гомогенности, термической стабильности и ростовой морфологии вискеров;
разработка эффективных методов химической модификации - внедрения ионов в нитевидные кристаллы и нановискеры;
- определение физико-химических и электрохимических характеристик вискеров до и после
химической модификации, установление влияния природы внедренных ионов на свойства
вискеров;
разработка методик поверхностного декорирования (наноструктурирования) вискеров с использованием методов «мягкой химии»;
анализ каталитической активности химически и морфологически модифицированных вискеров.
Научная новизна может быть сформулирована в виде следующих положений, выносимых на защиту:
Впервые исследованы фазовые соотношения в системе Ва-Мп-0 в области составов, обогащенных оксидом марганца (IV), что позволило оптимизировать условия синтеза манганитов бария с перспективными свойствами.
Разработаны методики получения порошков, керамики и нитевидных кристаллов в системе Ва-Мп-О. Впервые выращены нитевидные кристаллы (толщиной 100 нм - 10 микрон и длиной до 1.5 см) барийсодержащих манганитных фаз с туннельной структурой.
Осуществлен анализ микроморфологии вискеров состава ВабМп24048, ориентации в процессе роста, предложена модель их роста. Подтверждено, что рост нитевидных кристаллов манганитов при изотермическом (900-950С) испарении флюса (расплава КС1) происходит за счет транспорта марганецсодержащих компонентов через газовую фазу к областям расплава, локализованным в основании вискеров.
Впервые получена протонированная форма нитевидных кристаллов в результате их обработки концентрированными кислотами. Образование Н-формы фазы Ва6Мп24048 происходит по механизму ионного обмена части ионов бария на протоны и сопровождается анизотропным уменьшением параметра решетки а перпендикулярно направлению структурных туннелей и повышением средней степени окисления марганца в структуре. Вхождение протона в структуру сопровождается образованием связей Mn-ОН. Н-форма вискеров ВабМп24048 является смешанным электронно-ионным проводником: протонная проводимость составляет 0.5-1.0-10" Ом" -см" , а электронная - 0.8-1.7-10" Ом" -см" (при 24С).
Кислотная обработка вискеров ведет к де ламинированию сросшихся вискеров с образованием нановолокон толщиной 30-50 нм и позволяет проводить декорирование вискеров за счет роста нанокристаллов (5-20 нм) на поверхности вискеров. В реакции доокисления угарного газа (СО) до диоксида углерода (С02) марганецсодержащие вискеры в качестве гетерогенных катализаторов приводят к конверсии свыше 80 об. % СО при 200С.
Впервые разработаны методики введения лития в кристаллическую структуру вискеров ВабМп24048 за счет электрохимической интеркаляции и при реакции ионного обмена с растворами или расплавами солей лития, определены температурно-временные режимы этих процессов. Наиболее перспективным методом внедрения лития в структуру нитевидных кристаллов состава ВабМп24048 является электрохимическая интеркаляция в их химически и морфологически модифицированную форму - протонированные вискеры Н-ВабМп24048 (~5 моль лития на элементарную ячейку). При циклировании электродов из Н-формы вискеров ВабМп24048 на первом разрядном цикле достигается емкость 85 мАч/г и сохраняется на уровне ~70 мАч/г после десятого цикла.
Практическая значимость настоящей работы заключается в возможности использования полученных химически и морфологически модифицированных нитевидных кристаллов в нескольких социально и экономически важных областях.
1. Присутствие в кристаллической структуре марганца, легко изменяющего свою степень окисления и особая кристаллическая структура срастания туннелей различного размера обуславливают смешанную электронно-ионную проводимость, возможность интеркаляции-деинтеркаляции и высокую подвижность ионов в нитевидных кристаллах ВабМп24048. Это позволяет в силу уникального сочетания улучшенных механических свойств и суперионной проводимости использовать такие вискеры для создания электродных
материалов нового поколения. В частности, перспективным является создание гибких тканевых электродов, полученных из таких неорганических волокон.
Присутствие марганца в степени окисления +4, а также возможность введения в структуру протонов и ионов d-элементов позволяют создавать уникальные каталитические системы для органического синтеза, доокисления выхлопных газов и других экологических применений, при этом вискеры не требуют нанесения на подложку или другой носитель и легко могут быть отделены от реакционной системы.
Смешанно-валентное состояние марганца, достаточно высокая электронно-ионная проводимость, уникальная форма нитевидных кристаллов, их транспортные характеристики предопределяют их потенциальное использование в качестве активных элементов сенсоров.
Работа выполнена в рамках проектов РФФИ (04-03-32183) «Роль химических факторов и локальных искажений структуры в кросс-корреляции магнитных и электрических свойств смешанно-валентных манганитов с различной размерностью металл-кислородного каркаса», РФФИ (04-03-32827) «Формирование стабильных каркасных структур из гидрозолей диоксида марганца при адсорбции молекулярных темплатов», ФЦНТП 02.434.11.2007 и 02.442.11.7445, поданы 2 заявки на патенты: «Манганита бария в виде нановолокон протонированной формы вискеров и способ их получения» (№ 2006132422) и «Способ получения гибких электродов» (№2006134494). Результаты НИР могут быть использованы для проведения ОКР на базе Института проблем химической физики РАН (г. Черноголовка), Института кристаллографии РАН (г. Москва), Института химии твердого тела РАН (г. Екатеринбург), Института физической химии и электрохимии РАН (г. Москва).
Личный вклад автора. В основу диссертации положены результаты научных исследований, выполненных непосредственно автором в период 2000-2007 г.г. в Московском государственном университете им. М.В. Ломоносова на Факультете наук о материалах и кафедре неорганической химии Химического факультета.
Публикации и апробация работы. Материалы диссертационной работы опубликованы в 21 работе, в том числе в 8 статьях в российских и зарубежных научных журналах и сборниках и 13 тезисах докладов на международных и всероссийских научных конференциях.
Результаты работы доложены на V Всероссийской научной конференции «Оксиды. Физико-химические свойства» (Екатеринбург, 2000), VII Международной конференции «Мессбауэровская спектроскопия и ее применения» (Санкт-Петербург, 2002), IV Международном семинаре «Нелинейные процессы и проблемы самоорганизации в современном материаловедении» (Астрахань, 2002), 8-ой Международной конференции «Фундаментальные проблемы ионики твердого тела» (Черноголовка, 2006), XII Национальной конференции по росту кристаллов (Москва, 2006), I Междисциплинарной школе-семинаре «Химия неорганических материалов и наноматериалов» (Москва, 2006), Конференции молодых ученых «Новые материалы и технологии» (Киев, 2006), 8-ом Международном симпозиуме по системам с быстрым ионным транспортом (Вильнюс, 2007), 58-ой Ежегодной Международной конференции Электрохимического Общества «Исследование границ электрохимии» (Банфф, 2007), XVIII Менделеевском съезде по общей и прикладной химии, а также на Международных конференциях студентов и аспирантов по фундаментальным наукам «Ломоносов-2000, 2003».
Объем и структура работы. Диссертационная работа изложена на 171 странице машинописного текста, иллюстрирована 81 рисунком и 15 таблицами. Список цитируемой литературы содержит 194 наименования. Работа состоит из введения, обзора литературы, экспериментальной части, результатов и их обсуждения, выводов, списка цитируемой литературы и приложений.