Введение к работе
Актуальность темы
Исследование критического поведения неупорядоченных систем представляет большой теоретический и экспериментальный интерес, поскольку большинство реальных твердых тел содержат замороженные дефекты структуры, присутствие которых влияет на характеристики систем. В частности, при фазовых переходах поведение таких систем может существенно меняться. В большинстве работ исследование ограничивается рассмотрением точечных дефектов низкой концентрации. Согласно критерию Харриса [1], такие дефекты изменяют критическое поведение только систем с расходящейся теплоемкостью (изингоподобные магнетики). В то же время вопрос о влиянии на критическое поведение эффектов корреляции дефектов практически не исследован. В рамках этой же проблемы можно поставить вопрос о влиянии на критическое поведение протяженных дефектов (дислокаций, границ зерен), что еще больше приближает исследователей к описанию реальных материалов.
В работе [2] представлена модель изотропной неупорядоченной системы с даль-нодействующей корреляцией дефектов. Был получен критерий существенности ее влияния на критическое поведение систем и показано, что дефекты, обладающие свойством дальней пространственной корреляции, могут при определенных условиях изменять критическое поведение не только систем с однокомпонентным параметром порядка (модель Изинга), но и систем с двухкомпонентным (XY-модель) и трехкомпонентным (модель Гейзенберга) параметром порядка. Также были получены значения статических критических индексов в однопетлевом приближении с использованием метода двойного є, -разложения. Однако существует ряд работ [3, 4], посвященных теоретико-полевому описанию однородных и неупорядоченных моделей, которые показывают существенное различие реального критического поведения и предсказаний однопетлевых приближений (особенно результатов є-разложения). В работе [5] было осуществлено теоретико-полевое описание критического поведения непосредственно трехмерных систем с дальнодействующей изотропной корреляцией дефектов в двухпетлевом приближении с последовательным применением для анализа рядов разложения методов суммирования и проведен расчет статических и динамического критических индексов для систем с различным числом компонент параметра порядка и различными значениями параметра корреляции. Было выявлено значительное отличие характеристик критического поведения систем с дальнодействующей корреляцией от аналогичных характеристик для однородных систем и систем с некоррелированными дефектами. Удалось установить, что получающаяся картина областей устойчивости различных типов критического поведения для одних и тех же параметров модели, существенно отличается от предсказываемых в работе [2].
Поэтому до сих пор остается открытой проблема проверки с помощью физического или компьютерного эксперимента результатов ренормгруппового описания критического поведения систем с дальнодействующей корреляцией дефектов. Не ясно также, изменяются ли характеристики систем в зависимости от степени разбавления немагнитными атомами, или имеет место универсальное критическое по-
ведение во всем диапазоне концентраций примеси вплоть до порога перколяции. Ренормгрупповое описание не дает ответа на этот вопрос, поскольку применимо лишь в области низких концентраций дефектов.
Цель работы
Целью настоящей диссертации является:
исследование влияния дальнодействующей корреляции дефектов структуры на критическое поведение систем с различным числом компонент параметра порядка посредством численного изучения методами Монте-Карло ферромагнитных трехмерных моделей Изинга и XY.
численное исследование неравновесного критического поведения трехмерных моделей Изинга и XY с линейными дефектами при спиновых концентрациях р = 0.80 и р = 0.60 методом коротковременной динамики при рассмотрении эволюции систем из разных начальных неравновесных состояний. Определение совокупности значений для независимых динамических z: 9 и статических z/, [3 критических индексов с применением метода поправок к скейлпнгу. Сопоставление полученных значений критических индексов для слабо неупорядоченных систем с р = 0.80 с существующими результатами теоретико-полевых расчетов.
численное исследование равновесного критического поведения трехмерной модели Изинга с линейными дефектами со спиновой концентрацией р = 0.80 традиционным методом Монте-Карло и определение совокупности статических критических индексов с применением метода поправок к скейлпнгу. Сопоставление полученных значений критических индексов со значениями аналогичных критических индексов, определенных методом коротковременной динамики.
Научная новизна результатов
Впервые осуществлено компьютерное моделирование неравновесного критического поведения трехмерных моделей Изинга и XY с дальней пространственной корреляцией дефектов в коротковременном режиме. При исследовании критической релаксации модели из различных начальных состояний системы определены значения совокупности динамических и статических критических индексов при применении методики учета поправок к скейлпнгу. Полученные результаты позволяют сделать вывод о существовании различных классов универсального критического поведения для рассматриваемых систем, отвечающих областям слабой и сильной структурной неупорядоченности.
Впервые получено численное подтверждение о существенности влияния дальней пространственной корреляции дефектов на критическое поведение не только изингоподобных систем, как в случае систем с некоррелированным структурным беспорядком, но и систем с многокомпонентным параметром порядка (на примере XY-модели).
Впервые продемонстрировано при сопоставлении результатов компьютерного моделирования неравновесного критического поведения трехмерной модели Изинга с дальней пространственной корреляцией дефектов в коротковременном режиме и ее равновесного критического поведения, что метод коротковременной динамики может служить надежной альтернативой традиционным методам Монте-Карло не только при численных исследованиях однородных систем, но и систем со структур-
ным беспорядком, обеспечивая при меньших машинных затратах получение более полной информации о критическом поведении структурно неупорядоченных систем.
Научная и практическая значимость работы
В настоящее время компьютерное моделирование различных систем становится альтернативой физическому эксперименту и зачастую единственно возможным способом получения достоверной информации. Для осуществления компьютерного моделирования применяются мощные вычислительные системы (суперкомпьютеры и вычислительные кластеры), непрерывно совершенствуемые год от года. Важной областью применения методов компьютерного моделирования является теория критического поведения сильно неупорядоченных систем, когда невозможно проведение аналитического описания.
Исследование влияния дефектов структуры и эффектов их корреляции является актуальным направлением современной физики конденсированного состояния, т.к. практически все реальные материалы содержат примеси и другие дефекты структуры. Дальнодействующая корреляция в пространственном распределении дефектов может модифицировать критические свойства неупорядоченных систем. На это указывают эксперименты по рассеянию нейтронов и рентгеновского излучения на различных системах, находящихся в критических точках. В силу этого к моделям систем с дальнодействующей корреляцией дефектов существует несомненный интерес как с общетеоретической точки зрения выявления новых типов критического поведения в неупорядоченных системах, так и с точки зрения реальной возможности проявления дальнодействующей корреляции дефектов в ориента-ционных стеклах [6], полимерах [7] и неупорядоченных твердых телах с дефектами фракталоподобного типа [8].
Полученные в диссертации результаты вносят существенный вклад в развитие численных методов применительно к неупорядоченным спиновым системам, а также дают обоснование и развитие представлений теории критических явлений неупорядоченных систем, являются отправной точкой для последующих исследований в данной области теоретической и вычислительной физики.
Основные положения, выносимые на защиту
Методика численного исследования неравновесного критического поведения структурно неупорядоченных трехмерных моделей Изинга и XY с дальней пространственной корреляцией дефектов в коротковременном режиме и методика определения значений критических индексов с учетом ведущих поправок к скейлингу.
Наличие нескольких этапов динамического развития слабо неупорядоченных систем после микроскопического временного масштаба: области с характеристиками однородной системы, кроссоверной области и области, характеризующейся влиянием структурного беспорядка.
Подтверждение расширенного критерия Харриса о влиянии дефектов с дальней пространственной корреляцией на критическое поведение не только изингопо-добных систем, но и систем с многокомпонентным параметром порядка (на примере XY-модели).
Возникновение при концентрациях спинов большей порога спиновой перколя-
ции двух классов универсального критического поведения, отвечающих слабой и сильной структурной неупорядоченности.
Апробация работы
Основные результаты диссертационной работы докладывались и обсуждались на III Международной конференции «Фундаментальные проблемы физики»(Казань, 2005), The 3-rd International Workshop Hangzhou 2006 on Simulational Physics (Hangzhou, 2006), Семинаре по вычислительным технологиям в естественных науках (Таруса, 2009), Международной конференции «Фазовые переходы, критические и нелинейные явления в конденсированных средах» (Махачкала, 2009), а также на научных семинарах кафедры теоретической физики ОмГУ.
Публикации
Список публикаций автора по теме диссертации включает 10 статей и тезисов докладов, опубликованных в российских и иностранных журналах, сборниках трудов и материалах конференций.
Структура и объем диссертации