Электронная библиотека диссертаций и авторефератов России
dslib.net
Библиотека диссертаций
Навигация
Каталог диссертаций России
Англоязычные диссертации
Диссертации бесплатно
Предстоящие защиты
Рецензии на автореферат
Отчисления авторам
Мой кабинет
Заказы: забрать, оплатить
Мой личный счет
Мой профиль
Мой авторский профиль
Подписки на рассылки



расширенный поиск

Решение задач нелинейного деформирования и устойчивости оболочек методом конечных элементов Железнов Лев Петрович

Решение задач нелинейного деформирования и устойчивости оболочек методом конечных элементов
<
Решение задач нелинейного деформирования и устойчивости оболочек методом конечных элементов Решение задач нелинейного деформирования и устойчивости оболочек методом конечных элементов Решение задач нелинейного деформирования и устойчивости оболочек методом конечных элементов Решение задач нелинейного деформирования и устойчивости оболочек методом конечных элементов Решение задач нелинейного деформирования и устойчивости оболочек методом конечных элементов
>

Диссертация - 480 руб., доставка 10 минут, круглосуточно, без выходных и праздников

Автореферат - бесплатно, доставка 10 минут, круглосуточно, без выходных и праздников

Железнов Лев Петрович. Решение задач нелинейного деформирования и устойчивости оболочек методом конечных элементов : диссертация ... доктора технических наук : 05.07.03 / Железнов Лев Петрович; [Место защиты: Новосибирский государственный технический университет].- Новосибирск, 2009.- 322 с.: ил.

Введение к работе


Актуальность работы. Создание современных летательных аппаратов, обладающих высокими тактико-техническими данными и высокой экономичностью, предъявляет повышенные требования к прочностному расчету их конструкций. Поэтому уточнение существующих и разработка новых эффективных методов расчета оболочек, как важнейших составных частей конструкций ракет и самолетов, с учетом моментности и нелинейности деформирования тонкостенных конструкций, а на основе их эффективных компьютерных программ, продолжает оставаться актуальной задачей и в наши дни.

В настоящее время достигнуты значительные успехи в исследованиях прочности и устойчивости оболочек. Ведущее место в решении проблемы устойчивости оболочек занимают работы С.П. Тимошенко, В.В. Новожилова, В.З. Власова, Х.М. Муштари, Э.И. Григолюка, В.В. Болотина, А.С. Вольмира, А.В. Саченкова, В.И. Мяченкова, Ю.В. Липовцева, В.В. Кабанова, Л.М. Куршина, Ю.В. Немировского, Н.П. Абовского, Г.Н. Замулы, Я.М. Григоренко, Н.В. Пустового, А.Н. Андреева, Л.И. Шкутина, Н.А. Алфутова, С.Н. Кана, Г.И. Расторгуева, И.Т. Вохмянина, Ю.Г. Коноплева, С.Н. Коробейникова, К.А. Матвеева, В.И. Самсонова, Ю.М. Волчкова, В.М. Корнева, В.И. Мамая, Ф.И. Шклярчука, Г.Н. Рудыха, Ю.Л. Тарасова, А.П. Янковского, В.К. Белова, Ю.И. Бадрухина, Лява, Доннелла, Альмрота, Бушнела, Стейна, Хуана, Фишера, и др.

Большинство известных решений задач устойчивости оболочек выполнено приближенно аналитическими методами в классической линейной постановке при безмоментном однородном докритическом напряженном состоянии. При этом не учитывались ни моментность, ни нелинейность исходного напряженно-деформированного состояния (НДС) оболочек. В тонких оболочках такой подход дает большую погрешность, так как их НДС даже при простейших нагрузках является неоднородным, моментным и нелинейным. При этом линейный (бифуркационный) подход зачастую неприменим. Поэтому устойчивость тонких оболочек следует исследовать в рамках нелинейного подхода. В случае сложных нагрузок (поперечный изгиб, комбинированное нагружение) нет решений даже в линейной постановке.

В последнее время с интенсивным внедрением в практику расчетов ЭВМ наиболее эффективными оказались интенсивно используемые численные методы: метод конечных элементов (МКЭ), метод конечных разностей (МКР), метод численного интегрирования, вариационно-разностный метод. Наиболее эффективным из них оказался МКЭ. Преимущества его в универсальности, физичности и неограниченной возможности применения к сложным конструкциям при произвольном нагружении. МКЭ нашел широкое применение к исследованию задач прочности. Следует отметить работы В.А. Постнова, В.А. Комарова, Г.Н. Замулы, К.М. Иерусалимского, Ю.И. Иванова, В.Д. Чубаня, В.И. Гришина, Ю.И. Дударькова, В.А. Дубини, А.Б. Кудряшова, А.С. Дзюбы, Ю.А. Шевченко, А.И. Голованова, К.П. Горбачева, В.В. Кабанова, Ю.И. Бадрухина, В.В. Кузнецова, С.Н. Коробейникова, С.В. Астрахарчика, Х.С. Хазанова, Л.М. Савельева, А.С. Сахарова, В.Е. Левина, Зенкевича, Одена и др. В первых работах по расчету оболочек МКЭ использовались, как правило, плоские треугольные конечные элементы (КЭ). В дальнейшем появился ряд криволинейных КЭ, обладающих различной степенью эффективности. Здесь следует отметить в первую очередь работы Асвелла и Сабира, Кантина, Клафа , Богнера , Фокса, Шмита. Большинство разработанных КЭ являются элементами круговых цилиндрических, конических или сферических оболочек. Построение эффективных КЭ оболочек является актуальной задачей и по настоящее время. Применение МКЭ к расчету оболочек связано со значительными трудностями, обусловленными кривизной оболочки. Большинство исследований проведено для круговых цилиндрических оболочек при однородных НДС и, как правило, без учета моментности и нелинейности деформирования их в исходном (докритическом) состоянии.

Цель работы: дальнейшее развитие теории нелинейного деформирования и устойчивости тонкостенных оболочек на основе метода конечных элементов при неоднородном термомеханическом нагружении и разработка конечно-элементных методов и компьютерных программ для исследования новых задач нелинейного деформирования и устойчивости оболочек аэрокосмической техники.

Для достижения поставленной цели в работе решаются следующие задачи:

  1. разработка новых эффективных КЭ тонких оболочек различного вида (оболочки вращения, некруговые цилиндрические оболочки) и подкрепляющего их набора из стрингеров и шпангоутов;

  2. разработка на основе этих КЭ численных алгоритмов и компьютерных программ для решения задач нелинейного деформирования и устойчивости оболочек;

  3. решение и численное исследование новых задач нелинейного деформирования и устойчивости оболочек в геометрически и физически нелинейной постановке;

  4. решение практически важных задач прочности и устойчивости типовых конструкций аэрокосмической техники;

  5. внедрение разработанных компьютерных программ на предприятиях аэрокосмической отрасли.

Работа выполнялась в рамках отраслевых государственных программ развития авиационной, ракетной и космической техники, в последнее время в рамках Федеральной целевой программы «Развитие гражданской авиационной техники России на 2002 – 2010 годы и на период до 2015 года».

Научная новизна:

  1. разработано семейство новых эффективных оболочечных КЭ для некруговых цилиндрических оболочек, оболочек вращения и оболочек двойной кривизны, в отличие от известных КЭ имеют естественную кривизну и учитывают их жесткие перемещения как твердых недеформируемых тел;

  2. разработано семейство новых, совместных с конечными элементами оболочек криволинейных балочных КЭ естественной кривизны для подкреплений (стрингеров и шпангоутов) с учетом знака их эксцентриситета, позволяющих учитывать дискретность расположения подкреплений;

  3. разработаны алгоритмы МКЭ для решения задач нелинейного деформирования и устойчивости рассмотренных выше оболочек и составных оболочек с учетом моментности и нелинейности исходного НДС при произвольном термомеханическом нагружении, особенностью которых является то, что задача устойчивости в них не выделяется отдельно, а критические нагрузки определяются в процессе решения нелинейной задачи;

  4. разработаны алгоритмы МКЭ для решения задач определения физически нелинейного моментного НДС в конструкциях летательных аппаратов типа тонкостенных оболочек;

  5. результаты исследования широкого спектра новых задач нелинейного деформирования и устойчивости различного рода оболочек при раздельном и комбинированном термомеханическом нагружениях, позволяющие оценить устойчивость оболочек, влияние нелинейности и моментности исходного НДС на критические нагрузки, рамки использования известных линейных решений, полученных в классической постановке.

Теоретическая и практическая значимость диссертации.

Теоретическая значимость заключается в дальнейшем развитии теории прочности и устойчивости оболочек, решении новых задач устойчивости круговых, овальных и эллиптических цилиндрических оболочек, оболочек вращения, составных оболочек при раздельном и комбинированном термомеханическом нагружении с учетом нелинейности и моментности их НДС. Практическая значимость заключается в разработке конечно-элементных алгоритмов, компьютерных программ, получении обширной информации по критическим нагрузкам, определении области применимости известных приближенных линейных решений, в рекомендациях по расчету на устойчивость элементов конструкций летательных аппаратов, в решении ряда практически важных задач нелинейного деформирования и устойчивости элементов конструкций летательных аппаратов.

Реализация работы. Компьютерные программы и результаты исследований (НДС, критические нагрузки, формы потери устойчивости) использовались при проектировании новых летательных аппаратов на аэрокосмических предприятиях. Полученные результаты реализованы в «Рекомендациях по расчетам» в авиационных ОКБ и внедрены в ОАО «Туполев», ОКБ «Сухой», НПО «Прикладная механика», Центральное серийное конструкторское бюро (ЦСКБ) Самара.

Достоверность и обоснованность результатов подтверждается строгой постановкой задач с использованием апробированного математического аппарата теории тонких оболочек, тестированием алгоритмов, исследованиями сходимости решений, сравнением результатов исследований с известными экспериментами и исследованиями других авторов.

Апробация работы. Основные результаты диссертации докладывались на третьей научно-технической конференции (СибНИА, 1974 г.), шестой конференции по статической прочности летательных аппаратов (ЦАГИ, 1975 г.), ХI Всесоюзной конференции по теории оболочек и пластин (Харьков, 1977 г.), четвертой научно-технической конференции (СибНИА, I979 г.), конференции по статической прочности летательных аппаратов (ЦАГИ, I980 г.), симпозиуме по нелинейной теории оболочек и пластин (Казань, 1980 г.), научно-технической конференции (Челябинск, 1982 г.), научно-технической конференции по статической прочности летательных аппаратов (ЦАГИ, 1984 г.), ХIV Всесоюзной конференции по теории пластин и оболочек (Тбилиси, 1987 г.), III Всесоюзной научно-технической конференции "Современные проблемы строительной механики и прочности летательных аппаратов" (Казань, 1988 г.), XVII Межреспубликанской конференции по численным методам решения задач теории упругости и пластичности (Новосибирск, 2001 г.), Российско-Китайской научной конференции (ЦАГИ, 2003 г.), ХVIII Межреспубликанской конференции по численным методам решения задач теории упругости и пластичности (Кемерово, 2003 г.), Всероссийской научно-технической конференции, посвященной 60-летию отделений аэродинамики летательных аппаратов и прочности авиационных конструкций СибНИА (Новосибирск, 2004 г.), ХХ Всероссийской конференции по численным методам решения задач теории упругости и пластичности (Кемерово, 2007 г.), Всероссийской научно-технической конференции по аэродинамике и прочности летательных аппаратов (СибНИА, 2008 г.), Чаплыгинских чтениях (СибНИА, 2009 г.), научном семинаре кафедры "Прочность летательных аппаратов" НГТУ (Новосибирск, 2009 г.).

Публикации. По теме диссертации опубликовано 68 статей, в том числе 23 статьи в журналах, входящих в перечень изданий, рекомендованных ВАК РФ, 1 статья в рецензируемом журнале, 35 статей в сборниках научных статей, 9 статей в трудах научно-технических конференций.

Объем диссертации. Диссертация состоит из введения, четырех глав, заключения, изложена на 417 страницах основного текста, содержит 504 рисунка, 41 таблиц, список используемых источников из 281 наименования и приложения.

Похожие диссертации на Решение задач нелинейного деформирования и устойчивости оболочек методом конечных элементов