Электронная библиотека диссертаций и авторефератов России
dslib.net
Библиотека диссертаций
Навигация
Каталог диссертаций России
Англоязычные диссертации
Диссертации бесплатно
Предстоящие защиты
Рецензии на автореферат
Отчисления авторам
Мой кабинет
Заказы: забрать, оплатить
Мой личный счет
Мой профиль
Мой авторский профиль
Подписки на рассылки



расширенный поиск

Математическое моделирование кинетики клеточной популяции кишечного эпителия Толстая Мария Викторовна

Диссертация, - 480 руб., доставка 1-3 часа, с 10-19 (Московское время), кроме воскресенья

Автореферат - бесплатно, доставка 10 минут, круглосуточно, без выходных и праздников

Толстая Мария Викторовна. Математическое моделирование кинетики клеточной популяции кишечного эпителия : диссертация ... кандидата физико-математических наук : 05.13.18, 03.00.25.- Санкт-Петербург, 2006.- 138 с.: ил. РГБ ОД, 61 06-1/444

Введение к работе

Актуальность темы диссертационного исследования. Актуальность темы диссертационной работы определяется важностью разработки проблемы кинетики клеточных популяций для теории и практики биологии и медицины. Изучение кинетики популяций необходимо для понимания механизмов регенерации тканей и органов, а также для анализа сложных регуляторных процессов поддержания гомеостаза, нарушения которого приводят к патологиям, развивающимся, в частности, при радиационных поражениях и онкогенезе.

Далеко не все аспекты этой важной проблемы решены методами экспериментальной морфологии. Для выяснения многих вопросов представляется целесообразным применение сбалансированного сочетания натурного эксперимента, математического моделирования и численного эксперимента на ЭВМ.

Для изучения сложных регуляторных механизмов поддержания тканевого гомеостаза прекрасной моделью является кишечный эпителий, относящийся к быстро обновляющимся тканевым системам; он интересен как пример клеточной популяции, самообновляющейся на основе общего предшественника -стволовой клетки. Кроме того, клеточная популяция тонкой кишки обладает мощными механизмами защиты от негативных воздействий. К ним относятся: компенсация погибших клеток в ткани благодаря пролиферации; задержка митоза, дающая время для репарации повреждений в клетках (И.Б.Токин, 1994); изменение механизма дифференцирования клеток, направленное на скорейшее восстановление популяции стволовых клеток; увеличение численности клеток, проявляющих клоногенные свойства.

Кишечный эпителий - тканевая система, обладающая свойствами самовосстановления и выхода в стационарное состояние при возмущениях, т.е. свойством целостности и устойчивого самосохранения. Структура и функции кишечною эпителия детально изучены, что облегчает интерпретацию экспериментальных данных. В качестве повреждающего агента чаще всего использовали ионизирующее излучение, однако, механизмы, вовлеченные в процесс репарации после лучевого повреждения, остаются не до конца выясненными.

Настоящее исследование посвящено разработке математической модели популяции эпителия тонкой кишки в нормальном и пертурбационном состоянии. Подбор параметров модели произведен нами на основе полученных к настоящему времени экспериментальных данных (C.S.Potten, 1983, 1994; N.A.Wright, 2000 a. oth.) построенная математическая модель исследована качественно и количественно.

Математическая модель кинетики кишечного эпителия может иметь не только теоретическое, но и прикладное значение; возможно ее применение для изучения действия различных режимов фракционного облучения на клеточную популяцию эпителия при рентгено-радиологических процедурах и аварийных ситуациях, связанных с облучением организма.

Цель работы. Целью данной работы было создание и исследование математической модели пострадиационного восстановления быстро обновляющейся клеточной популяции эпителия тонкой кишки. Для достижения данной цели были поставлены следующие задачи:

  1. Построение математической модели динамики клеточной популяции в нормальном и пертурбационном состоянии с учетом процессов пролиферации, дифференциации и апоптоза.

  2. Подбор параметров модели на основе экспериментальных данных, полученных для кишечного эпителия лабораторной мыши.

  3. Качественное и количественное исследование построенной модели.

  4. Обоснование возможного применения построенной модели для изучения действия различных режимов фракционного облучения на клеточную популяцию эпителия.

Методы исследования. В работе использованы методы теории дифференциальных уравнений, теории устойчивости, математической статистики и различные численные методы.

Положения, выносимые на защиту:

  1. Математическая модель дозово-временной зависимости динамики клеточной популяции эпителия тонкой кишки в нормальном и пертурбационном состоянии, построенная на основе кинетического подхода с использованием аппарата дифференциальных уравнений.

  2. Качественное и количественное исследование построенной модели. Решение задачи идентификации параметров модели на основе экспериментальных данных, полученных для кишечного эпителия лабораторной мыши.

  3. Возможность применения построенной модели для изучения действия различных режимов фракционного облучения на клеточную популяцию эпителия.

Научная новизна работы. В отличие от уже существующих моделей в построенной модели учтены два механизма обратной связи (регуляция на уровне стволовых и зрелых клеток), что дает лучшее соответствие экспериментальным кривым. Кроме того, учтено наличие в криптах клоногенных клеток - транзитные клеіки 1-го поколения рассматриваются как клетки, способные проявлять клоногенные способности. Установлена связь между длительностью митотиче-ской задержки и уровнем выживаемости делящихся клеток. Построенная модель позволяет исследовать дозово-временную динамику апоптических и некротических клеток. Все результаты, изложенные в оригинальной части работы получены впервые и являются новыми.

Достоверность и обоснованность полученных результатов работы базируется на строгом аналитическом исследовании модели, а также на проведении проверки адекватности построенной модели на основе сопоставления с экспериментальными данными.

. і 4

Теоретическая и практическая значимость. Хотя работа носит теоретический характер, ее результаты имеют как теоретическую, так и практическую ценность.

Рассматриваемые проблемы представляют интерес для специалистов в области цитологии, гистологии, клеточной биологии, управления в медико-биологических системах (на клеточном и тканевом уровнях); специалистов, работающих в области клеточной и тканевой инженерии. Моделирование процессов, регулирующих клеточное деление и тканевый рост необходимо для понимания биофизических процессов в живой материи, а затем и в медицинской технике и клинической практике.

Опубликованные работы. По теме диссертации автором опубликованы 5 научных работ [1-5], список которых представлен в конце автореферата.

Апробация результатов. Основные итоги диссертационных исследований докладывались и обсуждались на 3-й Российской университетско-академической научно-практической конференции (Ижевск, 1997г.) и на XXXII научной конференции «Процессы управления и устойчивость» факультета ПМ-ПУ СПбГУ (Санкт-Петербург, 2001г.).

Структура и объем работы. Диссертационная работа состоит из введения, четырех глав, заключения и списка использованной литературы. Общий объем работы 138 страниц машинописного текста, 36 иллюстраций, 11 таблиц. Библиография включает 137 наименований.

Похожие диссертации на Математическое моделирование кинетики клеточной популяции кишечного эпителия