Электронная библиотека диссертаций и авторефератов России
dslib.net
Библиотека диссертаций
Навигация
Каталог диссертаций России
Англоязычные диссертации
Диссертации бесплатно
Предстоящие защиты
Рецензии на автореферат
Отчисления авторам
Мой кабинет
Заказы: забрать, оплатить
Мой личный счет
Мой профиль
Мой авторский профиль
Подписки на рассылки



расширенный поиск

Моделирование процессов прохождения скользящих дислокаций через композиционные ансамбли призматических дислокационных петель и точечных препятствий в условиях комплексного нагружения Глебов, Сергей Александрович

Диссертация, - 480 руб., доставка 1-3 часа, с 10-19 (Московское время), кроме воскресенья

Автореферат - бесплатно, доставка 10 минут, круглосуточно, без выходных и праздников

Глебов, Сергей Александрович. Моделирование процессов прохождения скользящих дислокаций через композиционные ансамбли призматических дислокационных петель и точечных препятствий в условиях комплексного нагружения : диссертация ... кандидата физико-математических наук : 01.04.07.- Калуга, 1999.- 262 с.: ил. РГБ ОД, 61 01-1/13-5

Введение к работе

Актуальность темы работы.

Физические процессы прочности и пластичности кристаллических твердых тел в значительной мере обусловлены и предопределены особенностями дефектной структуры кристаллических твердых тел, особенностями и характеристиками дислокационных взаимодействий. Для целенаправленного изменения механических свойств материалов и изыскания возможных способов управления процессами пластической деформации, необходимо понимание микроскопических механизмов соответствующих процессов. Движение и торможение дислокаций непосредственно связано с их взаимодействием с различными ансамблями структурных несовершенств кристаллов, среди которых ансамбли дислокационной природы играют первостепенную роль. К числу последних относятся хаотические ансамбли, состоящие из дислокационных петель, которые в особенно большом количестве формируются при облучении твердых тел.

Исследование отдельных микроскопических механизмов процессов пластической деформации как экспериментальными, так и аналитическими методами в чрезвычайной степени затруднено из-за множественного характера дислокационных взаимодействий в данных процессах. В настоящее время наиболее эффективным средством для систематического изучения особенностей процессов движения скользящих дислокаций являются методы моделирования соответствующих процессов на ЭВМ. Компьютерное моделирование, во-первых, позволяет отказаться от многих упрощающих предположений, принимаемых при аналитическом рассмотрении, во-вторых, что особенно важно, позволяет рассматривать гипотетические модели, выявляя тонкие особенности процессов и влияние отдельных факторов, что невозможно сделать никакими другими средствами.

В связи с этим актуальной задачей является построение методик и анализ средствами компьютерного моделирования особенностей процессов прохождения скользящих дислокаций через различные ансамбли препятствий.

Целью работы являлось:

Построение физических моделей и методик моделирования процессов взаимодействия скользящих дислокаций с хаотическими композиционными ансамблями, составленными из колеблющихся призматических дислокационных петель и точечных препятствий.

Исследование закономерностей процессов движения скользящих дислокаций через композиционные ансамбли в зависимости от относительной концентрации точечных препятствий, их мощности и типа распределения призматических дислокационных петель.

Анализ сложения вкладов однокомпонентних ансамблей различной природы в упрочнение соответствующих композиционных ансамблей

Научная новизна диссертации состоит в том, в ней впервые, применительно к кристаллам с ГПУ структурой:

с учетом дальнодействующих полей напряжений, создаваемых ансамблем призматических дислокационных петель, осуществлено моделирование процессов движения скользящих дислокаций через различные модификации хаотических композиционных ансамблей призматических дислокационных петель и точечных препятствий;

получены основные статистические характеристики процессов движения скользящих дислокаций через композиционные ансамбли и проведен анализ их зависимости от мощности точечных препятствий, типа распределения ансамбля призматических дислокационных петель и относительной концентрации различных однокомпонентних ансамблей препятствий, входящих в состав композиционных;

ОБЩАЯ ХАРАКТЕРИСТИКА РАБОТЫ Актуальность темы работы.

Физические процессы прочности и пластичности кристаллических твердых тел в значительной мере обусловлены и предопределены особенностями дефектной структуры кристаллических твердых тел, особенностями и характеристиками дислокационных взаимодействий. Для целенаправленного изменения механических свойств материалов и изыскания возможных способов управления процессами пластической деформации, необходимо понимание микроскопических механизмов соответствующих процессов. Движение и торможение дислокаций непосредственно связано с их взаимодействием с различными ансамблями структурных несовершенств кристаллов, среди которых ансамбли дислокационной природы играют первостепенную роль. К числу последних относятся хаотические ансамбли, состоящие из дислокационных петель, которые в особенно большом количестве формируются при облучении твердых тел.

Исследование отдельных микроскопических механизмов процессов пластической деформации как экспериментальными, так и аналитическими методами в чрезвычайной степени затруднено из-за множественного характера дислокационных взаимодействий в данных процессах. В настоящее время наиболее эффективным средством для систематического изучения особенностей процессов движения скользящих дислокаций являются методы моделирования соответствующих процессов на ЭВМ. Компьютерное моделирование, во-первых, позволяет отказаться от многих упрощающих предположений, принимаемых при аналитическом рассмотрении, во-вторых, что особенно важно, позволяет рассматривать гипотетические модели, выявляя тонкие особенности процессов и влияние отдельных факторов, что невозможно сделать никакими другими средствами. В связи с этим актуальной задачей является построение методик и анализ средствами компьютерного моделирования особенностей процессов

2 прохождения скользящих дислокаций через различные ансамбли препятствий.

Целью работы являлось:

Построение физических моделей и методик моделирования процессов взаимодействия скользящих дислокаций с хаотическими композиционными ансамблями, составленными из колеблющихся призматических дислокационных петель и точечных препятствий.

Исследование закономерностей процессов движения скользящих дислокаций через композиционные ансамбли в зависимости от относительной концентрации точечных препятствий, их мощности и типа распределения призматических дислокационных петель.

Анализ сложения вкладов однокомпонентных ансамблей различной природы в упрочнение соответствующих композиционных ансамблей

Научная новизна диссертации состоит в том, в ней впервые: - разработаны оригинальные физические модели и методики моделирования процессов движения скользящих дислокаций через хаотические композиционные ансамбли, составленные из призматических дислокационных петель и точечных препятствий;

с учетом дальнодействующих полей напряжений, создаваемых ансамблем призматических дислокационных петель, осуществлено моделирование процессов движения скользящих дислокаций через различные модификации хаотических композиционных ансамблей призматических дислокационных петель и точечных препятствий;

получены основные статистические характеристики процессов движения скользящих дислокаций через композиционные ансамбли и проведен анализ их зависимости от мощности точечных препятствий, типа распределения ансамбля призматических дислокационных петель и относительной концентрации различных однокомпонентных ансамблей препятствий, входящих в состав композиционных;

для однокомпонентных ансамблей призматических дислокационных петель, независимо от. типа их распределения, установлен эффект "катастрофического" разупрочнения ансамбля при достижении критического значения амплитуды колебаний, когда призматические петли прекращает оказывать сопротивление движению скользящих дислокаций;

установлено, что независимо от мощности точечных препятствий и их относительной плотности в композиционных ансамблях разупрочнение ансамбля с ростом амплитуды колебаний петель может характеризоваться двумя этапами, которым соответствуют различные механизмы разупрочнения. На первом этапе, рост амплитуды приводит к снижению доли препятствий способных оказывать сопротивление движению скользящих дислокаций, что и обуславливает монотонное снижение величины критического напряжения прохождения. На втором этапе, дислокационные петли перестают оказывать сопротивление движению скользящих дислокаций, в следствии чего скользящие дислокации тормозятся исключительно точечными препятствиями, что и обуславливает в данной области неизменность значения критического напряжения прохождения;

проведен анализ вкладов в суммарное упрочнение компонент для различных композиционных ансамблей.

Научное и практическое значение диссертационной работы состоит в том, что полученные результаты и установленные закономерности вносят вклад в развитие физической теории прочности и пластичности углубляя современные представления о физической природе процессов, лежащих в основе деформационного упрочнения кристаллических твердых тел. Развитые в работе методы моделирования могут быть использованы для количественного анализа широкого круга вопросов физики деформационного упрочнения, связанных с взаимодействием дислокаций со сложными композиционными ансамблями препятствий, что должно способствовать решению задачи целенаправленного формирования механических свойств кристаллических материалов.

Практическая ценность работы заключается также в том, что полученные в ней результаты дают предсказание ряда новых эффектов и стимулируют постановку новых экспериментов по динамике дислокаций.

Положения выносимые на защиту.

1. Методика моделирования процессов взаимодействия скользящих
дислокаций с хаотическими композиционными ансамблями призматических
дислокационных петель и точечных препятствий.

2. Результаты детальных исследований процессов движения
скользящих дислокаций через различные модификации хаотических
композиционных ансамблей призматических дислокационных петель и
точечных препятствий; закономерности зависимости статистических
характеристик данных процессов от относительной концентрации компонент
композиционных ансамблей, типа распределения призматических петель и
мощности точечных препятствий.

3. Положение о существовании двух характерных размеров призматических дислокационных петель, которые предопределяют различные механизмы разупрочнения композиционных ансамблей; положение о возможном двухэтапном характере разупрочнения композиционного ансамбля призматических дислокационных петель и точечных препятствий по мере роста амплитуды колебаний петель.

4. Правило определения суммарного критического напряжения для композиционных препятствий, составленных из дислокаций леса и точечных препятствий по данным о вкладах в упрочнение соответствующих однокомпонентных ансамблей.

Апробации работы. Результаты диссертационной работы докладывались на следующих отечественных и зарубежных конференциях: International Conference on Systems, Modelling, Control (Zakopane, Poland, 1998); International Conference on Systems, Signals, Control, Computers (Durban, South Africa, 1998); International Conference on Systems and Signals in Intelligent Technologies (Minsk, Belarus, 1998); International Conference on

5 Modelling and Simulation (Santiago, Spain, 1999); Прогрессивные технологии автоматизации (Вологда, 1999); International Conference on Artificial Intelligence (Durban, South Africa, 1999); ХП Международная конференция по нейрокибернетике (Ростов-на-Дону, 1999); XX Международная конференция Релаксационные явления в твердых телах (Воронеж, 1999).

Публикации. По теме диссертации опубликовано 8 печатных работ.

Объем работы. Диссертационная работа состоит из введения, четырех глав, выводов и списка литературы. Она изложена на 118 страницах текста, содержит 57 рисунка, 14 таблиц, 127 библиографических названий.

Похожие диссертации на Моделирование процессов прохождения скользящих дислокаций через композиционные ансамбли призматических дислокационных петель и точечных препятствий в условиях комплексного нагружения