Электронная библиотека диссертаций и авторефератов России
dslib.net
Библиотека диссертаций
Навигация
Каталог диссертаций России
Англоязычные диссертации
Диссертации бесплатно
Предстоящие защиты
Рецензии на автореферат
Отчисления авторам
Мой кабинет
Заказы: забрать, оплатить
Мой личный счет
Мой профиль
Мой авторский профиль
Подписки на рассылки



расширенный поиск

Моделирование процесса конденсации инертных газов на поверхности графита и определение плотности потока радона и тепловых нейтронов Камарзаев, Ахмед Валерьевич

Диссертация, - 480 руб., доставка 1-3 часа, с 10-19 (Московское время), кроме воскресенья

Автореферат - бесплатно, доставка 10 минут, круглосуточно, без выходных и праздников

Камарзаев, Ахмед Валерьевич. Моделирование процесса конденсации инертных газов на поверхности графита и определение плотности потока радона и тепловых нейтронов : диссертация ... кандидата физико-математических наук : 01.04.07 / Камарзаев Ахмед Валерьевич; [Место защиты: Кабард.-Балкар. гос. ун-т им. Х.М. Бербекова].- Нальчик, 2011.- 101 с.: ил. РГБ ОД, 61 12-1/509

Введение к работе

профессор А.А. Ахкубеков

Актуальность темы.

Монослой инертного газа на базальной плоскости графита (0001) представляет интерес как двухмерная система с большим разнообразием поверхностных структур и фазовых переходов между ними. Метод молекулярной динамики дает возможность получить для этой системы уравнение состояния, которое удается аппроксимировать ван-дер-ваальсовской зависимостью. Такой подход позволяет выразить критические параметры системы, а именно, температуру, давление и объем через две постоянные Ван-дер-Ваальса. До настоящего времени остается открытым вопрос о корректном учете взаимодействия адсорбированных атомов с подложкой и термостатом. Для решения этой задачи нами развивается подход, связанный с заменой уравнений движения Ньютона на уравнения Ланжевена путем введения в функцию Лагранжа адатомов диссипативной части. При этом взаимодействие адатомов с термостатом учитывается посредством введения сил трения, направленных вдоль и противоположно скорости в случаях подвода и отвода тепла соответственно. Это также позволяет регуляризовать процедуру решения дифференциальных уравнений, избегая разогрева (охлаждения) системы из-за дискретности численных схем интегрирования.

Решение задачи эманационно-термического анализа для изучения адсорбционных и транспортных характеристик углеродных материалов, исследование прозрачности нанофильтров и молекулярных сит с проточной методикой, требует прецизионного измерения потока радона (220Rn, 222Rn). Плотность потока радона из почв, грунтов и конструкционных материалов обусловливает концентрацию радона в воздухе лабораторных и жилых помещений, определяя технологическую и экологическую пригодность последних. До настоящего времени методы измерения концентрации радона в воздухе по гамма- и бета- активностям дочерних продуктов его распада (ДПР) носили лишь качественный характер. Они основывались на непрямых измерениях и были подвержены большим систематическим ошибкам. Изменить ситуацию может использование сцинтилляционного детектора с большим кристаллом за счет более полного сбора гамма-квантов в 4-геометрии. Поэтому актуальна разработка соответствующего экспериментального метода.

Цель и задачи диссертационной работы

Целью диссертационной работы являются получение термодинамического уравнения состояния монослоев криптона, ксенона и радона на базальной плоскости графита (0001), изучение процессов их объемной и поверхностной конденсации, развитие на их основе методов прецизионных измерений плотностей потоков радона и тепловых нейтронов.

Для достижения указанной цели ставились и решались следующие задачи:

- методом молекулярной динамики получить уравнение состояния криптона, ксенона и радона на базальной плоскости графита (0001),

- изучить процесс объемной и поверхностной конденсации инертных газов в присутствии гравитационного и электрического внешних полей,

- разработать и экспериментально реализовать новый метод непрерывного количественного измерения концентрации радона-222 в воздухе по гамма- активности аэрозольных частиц захвативших ДПР радона,

- рассчитать эффективность и чувствительность цилиндрических детекторов тепловых нейтронов и связать темп их счета с плотностью потока нейтронов,

- установить теоретическую связь между потоком быстрых нейтронов и частотой регистрации тепловых нейтронов детектором, окруженным твердотельным (Pb, Bi, U) генератором вторичных нейтронов.

Научная новизна полученных результатов:

Методом молекулярной динамики получено двумерное уравнение состояния криптона, ксенона и радона на поверхности графита.

В рамках метода молекулярной динамики разработана методика получения уравнения состояния вблизи точек поверхностной и объемной конденсации инертных газов.

На базе разработанной методики проведен учет влияния диполь-дипольного взаимодействия атомов индуцированного внешним электрическим полем на уравнение состояния, а также установлена динамика формирования границы раздела фаз при конденсации инертных газов в гравитационном поле.

Разработан новый экспериментальный метод количественного определения концентрации радона в воздухе основанный на измерении активности конденсационных и диспергационных аэрозольных частиц, осаждаемых на фильтре.

Рассчитаны эффективность и чувствительность цилиндрических детекторов тепловых нейтронов в зависимости от содержания рабочих изотопов.

Построена модель, устанавливающая связь между внешним потоком быстрых нейтронов и темпом регистрации тепловых нейтронов детектором, окруженным твердотельным генератором вторичных нейтронов.

Практическая значимость результатов работы

Предлагаемая реализация метода молекулярной динамики используется для моделирования формирования нанокластеров в объеме и на поверхности раздела фаз. Результаты по адсорбции инертных газов на базальной плоскости поверхности графита (0001) и образованию сверхрешеток могут быть использованы в технологиях с применением графенов.

Развитый в работе метод непрерывного измерения концентрации атомов радона в воздухе, основанный на захвате ДПР радона аэрозольными частицами, в отличие от существующих, может быть использован в условиях высокой влажности и запыленности.

Результаты по прецизионному измерению плотности потока нейтронов используются в низкофоновых исследованиях, а также рекомендуется использовать в ядерной геофизике для идентификации радоновых выбросов и в ядерной энергетике для диагностики состояния реакторов.

Основные положения, выносимые на защиту:

Уравнение состояния криптона, ксенона и радона на базальной плоскости поверхности графита.

Уравнение состояния инертного газа с учетом поляризации атомов во внешнем электрическом поле.

Новый метод непрерывного количественного определения концентрации радона в воздухе, основанный на измерении гамма-активности конденсационных и диспергационных аэрозольных частиц, осаждаемых на фильтре.

Результаты расчетов эффективности и чувствительности цилиндрических детекторов тепловых нейтронов и связь между плотностью потока тепловых нейтронов темп их счета.

Модель, устанавливающая связь между потоком быстрых нейтронов и частотой регистрации тепловых нейтронов детектором, окруженным твердотельным генератором вторичных нейтронов.

Личный вклад автора. Автором лично выполнены все расчеты, представленные в работе. Разработаны программы для моделируемых задач и обработки результатов спектрометрических измерений. Автор принял участие в проведении экспериментов. Научный руководитель поставил задачи исследований, принял участие в обсуждении результатов.

Апробация результатов.

Материалы диссертационной работы докладывались и обсуждались на следующих конференциях:

Баксанская Молодежная школа экспериментальной и теоретической физики, БМШ ЭТФ-2005, КБГУ, пос. Эльбрус, 18-23 апреля, 2005 г.

Всероссийская научная конференция студентов, аспирантов и молодых ученых «Перспектива-2006». – пос. Эльбрус, 2006 г.

Баксанская Молодежная школа экспериментальной и теоретической физики, БМШ ЭТФ-2006, КБГУ, пос. Эльбрус, 17-23 октября, 2006 г.

Международный научно-практический семинар «Экологические проблемы современности», г. Майкоп, 12-15 мая, 2009 г.

Международная научно-практическая конференция “Прикладные аспекты геологии с использованием современных информационных технологий”, г. Майкоп, 16-20 мая, 2011г.

XV Международная школа “Частицы и космология”, г. Троицк, 26-30 мая, 2011 г.

Региональный научный семинар им. С.Н. Задумкина по физике фежфазных явлений, КБГУ, 2005-2011 г.г.

Публикации: По теме диссертации опубликовано 8 работ, 2 из них – в рецензируемых журналах, рекомендованных ВАК.

Объем и структура диссертации. Диссертационная работа изложена на 105 страницах машинописного текста, содержит 49 рисунков и 5 таблиц. Состоит из введения, четырех глав и списка литературы из 99 наименований.

Похожие диссертации на Моделирование процесса конденсации инертных газов на поверхности графита и определение плотности потока радона и тепловых нейтронов