Введение к работе
Актуальность работы. Подземные гидротехнические сооружения широко распространены в гидротехническом строительстве и одновременно являются одними из самых сложных, трудоемких и дорогих типов сооружений, входящих в состав основных сооружений гидроузлов, мелиоративных систем и систем водоснабжения.
Высокая ответственность конструкций гидротехнических сооружений предъявляет к ним повышенные требования в части достоверности расчетов прочности и безопасности согласно требованиям Закона РФ «О безопасности гидротехнических сооружений».
Гидротехнические туннели глубокого заложения могут возводиться с обделкой и без неё, при проходке в слаботрещиноватых скальных неразмываемых грунтах. Применение гидротехнических туннелей без обделки позволяет снизить их стоимость на 20-30% и сократить сроки строительства на 10-15%.
Одним из наиболее распространенных типов скального грунта является осадочная горная порода, главная особенность которой – слоистость – последовательное чередование слоев, образующихся в процессе периодического накопления осадков. Кроме того, любой тип скального грунта может быть пронизан горизонтальными трещинами.
На практике при расчете таких грунтовых массивов широко применяют модель трансверсально-изотропной (частный случай анизотропной) среды, при которой грунт в плоскости слоя обладает характеристиками изотропной среды, а в перпендикулярном направлении – отличными от изотропной среды характеристиками.
В существующих нормативных документах отсутствуют конкретные указания и рекомендации по методике расчета, выбору формы поперечного сечения и предельной глубине заложения гидротехнических туннелей без обделки, проложенных в анизотропных скальных грунтах. При этом указано, что для туннелей, располагаемых в анизотропных грунтах с отношением модулей деформации в разных направлениях более 1,4, расчеты необходимо выполнять с учетом анизотропии.
В практике проектирования гидротехнических сооружений широко используется метод конечных элементов (МКЭ), позволяющий определять напряженно-деформированное состояние (НДС) трансверсально-изотропной среды.
Тем не менее, в настоящее время отсутствуют исследования статического напряженного состояния гидротехнического туннеля без обделки, проходящего в трансверсально-изотропном скальном грунте.
Целью работы является разработка практических рекомендаций по выбору рациональной формы поперечного сечения гидротехнических туннелей без обделки, проложенных в трансверсально-изотропных скальных грунтах, и определению предельной глубины их заложения.
Из поставленной цели вытекают следующие задачи исследований:
- разработка методики расчета МКЭ гидротехнических туннелей разных форм поперечного сечения при статическом воздействии собственного веса трансверсально-изотропного скального грунта (выбор типа и размера конечного элемента, построение сетки расчетной области);
- изучение при помощи МКЭ статического напряженного состояния трансверсально-изотропного скального массива в окрестности гидротехнического туннеля с различной формой поперечного сечения;
- проведение расчетов и параметрического анализа напряженного состояния трансверсально-изотропного скального грунта вблизи гидротехнического туннеля от статического воздействия собственного веса грунта в зависимости от различных соотношений характеристик грунта в ортогональных направлениях (модулей деформации и коэффициентов Пуассона);
- разработка практических рекомендаций по выбору рациональной формы поперечного сечения и предельной глубины заложения гидротехнического туннеля без обделки, проложенного в трансверсально-изотропном скальном грунте.
Научная новизна:
- разработана методика расчета МКЭ по научно-обоснованному выбору расчетных схем, типа и размера конечного элемента, сетки расчетной области с оптимальным сгущением применительно к расчету гидротехнических туннелей разных форм поперечного сечения при статическом воздействии собственного веса трансверсально-изотропного скального грунта;
- проведен параметрический анализ напряженного состояния трансверсально-изотропного скального грунта вблизи гидротехнического туннеля без обделки от статического воздействия собственного веса грунта в зависимости от различных соотношений модулей деформации и коэффициентов Пуассона грунта в ортогональных направлениях;
- получены приближенные формулы, для определения наибольших тангенциальных напряжений от собственного веса грунта в опасном сечении на контуре туннеля различной формы сечения, проложенного в крепком трансверсально-изотропном скальном грунте, в зависимости от различных соотношений модулей деформации и коэффициентов Пуассона в ортогональных направлениях;
- разработаны практические рекомендации по выбору рациональной формы поперечного сечения и предельной глубины заложения гидротехнического туннеля без обделки, проложенного в трансверсально-изотропном скальном грунте.
На защиту выносятся:
- методика расчета, основанная на методе конечных элементов, по определению напряженного состояния вблизи гидротехнического туннеля без обделки, проложенного в трансверсально-изотропном скальном грунте, от действия собственного веса грунта;
- результаты параметрического анализа напряженного состояния гидротехнических туннелей без обделки, проложенных в трансверсально-изотропных скальных грунтах, от действия собственного веса грунта;
- практические рекомендации по выбору рациональных форм поперечного сечения и предельной глубины заложения гидротехнического туннеля без обделки, проложенного в трансверсально-изотропном скальном грунте.
Практическая ценность работы. Проведенные исследования позволяют надежно и научно обоснованно определять статическое напряженное состояние трансверсально-изотропного скального грунта вблизи гидротехнического туннеля. Определены предельные глубины заложения гидротехнических туннелей без обделки в зависимости от крепости скального грунта и отношений его характеристик в ортогональных направлениях.
Достоверность результатов исследований определяется применением научно-обоснованной методики расчета основанной на МКЭ, тестированием программного комплекса на известных аналитических решениях, а также согласованием результатов расчета с данными других авторов в ряде частных случаев.
Апробация работы. Основные положения диссертационной работы докладывались на научно-технических конференциях, кафедрах гидротехнических сооружений и строительной механики Московского государственного университета природообустройства в 2009 – 2011 г.
Публикации. По материалам диссертации опубликовано три печатные работы в научных журналах рекомендованных ВАК РФ.
Структура и объем диссертации. Диссертационная работа состоит из введения, четырех глав, заключения, библиографии (93 наименования, 12 на иностранных языках), приложения и содержит 175 страниц текста (включая 25 страниц приложения), 60 рисунков, и 22 таблицы (включая 10 таблиц приложения).