Введение к работе
Актуальность темы. Во введении обосновывается актуальность темы и излагаются основные результаты диссертации. Асимптотика энергии для некоторых классов уравнений гиперболического типа в последние десятилетия привлекает пристальное внимание математиков, физиков и инженеров, которое объясняется в первую очередь перспективами использования данного материала.
Несмотря на широкое научное и практическое применение данного материала, углубленное исследование их свойств представляется актуальным и в настоящее время. В частности, новые перспективы открывает использование линейной системы уравнений Максвелла первого порядка для вычисления асимптотики энергии для нелинейной системы уравнений Максвелла.
В данной работе нашли безусловное отражение основополагающие работы В.А. Ильина, А.А. Арсеньева, В.Д.Носова, О.А. Ладыженской, И. Кенджаева, М. Исматова, N.A. Schenk, T.Jkebe, В.П. Михайлова, А.М.Пыжьянова, Л.Фелсен, Н.Марковец, K.Mochizuki, Н.Е.Ратанова, Л.М.Лямшева, А.В.Фурдуева, Б.Н. Челнокова, И.И.Гихман, А.В.Скороход, Б.М.Левитана.
Цель и задачи исследования. Цель настоящей работы заключается в установлении асимптотических формул энергии, излученной различными источниками, для решения линейных и нелинейных уравнений в частных производных.
Методика исследования. Основными методами исследования явились метод разложения по собственным функциям дифференциальных операторов, метод Фурье или метод разделения переменных, современные методы теории функций, функционального анализа и математической физики. Рассматриваются дискретный и непрерывные спектры.
Научная новизна
-
Вычислена асимптотика энергии, излученной почти периодическим источником колебаний, для уравнений высшего порядка.
-
Вычислена асимптотика энергии, излученной в пространство почти периодическим источником электромагнитных волн, для линейной системы уравнений Максвелла первого порядка.
-
Установлена асимптотика энергии, излученной почти периодическим источником электромагнитных колебаний в волноводе, для линейной системы уравнений Максвелла первого порядка.
-
Вычислены асимптотики энергии для решения волнового уравнения во внешней области "ловушечного" типа.
-
Получена асимптотика энергии для абстрактной задачи Коши, симметрической гиперболической системы, для абстрактного волнового уравнения и для волноводов.
-
Вычислена асимптотика энергии для эволюционной стохастической системы уравнений.
-
Вычислена асимптотика энергии, излученной случайно расположенными источниками колебаний.
-
Исследованы резонансные свойства энергии, излученной распределенным по Пуассону точечным источником колебаний.
-
Вычислена асимптотика энергии случайных источников колебаний для абстрактной задачи Коши.
-
Вычислена асимптотика энергии, излученной во внешнюю среду случайным источником колебаний.
-
Вычислена асимптотика энергии для решения уравнения генерации звука в жидкости.
-
Дано обоснование обобщенного метода Римана (т.е. теории рядов Фурье по фундаментальной системе функций полигармонического оператора).
Практическая и теоретическая значимость. Результаты, полученные на основе данной работы, носят теоретической характер и могут быть применены для дальнейшего изучения аналогичных задач получения асимптотики энергии, излученной различными источниками, для решений уравнений с частными производными и для линейных либо нелинейных систем уравнений Максвелла, эволюционных стохастических систем уравнений. Результаты работы можно использовать в теории поля, теории упругости, теории рассеяния, при изучении задач физики плазмы, в теории кратных ортогональных рядов и интегралов Фурье.
Исследования автора также имеют большое практическое значение в математической физике, могут быть использованы при обосновании метода разделения переменных при решении краевых задач.
Апробация работы. Материалы диссертации докладывались и обсуждались на научном семинаре под руководством академика РАН В.А. Ильина, профессора ША. Алимова, профессора А.А. Арсеньева (МГУ), на Всесоюзном симпозиуме по дифференциальным и интегральным уравнениям (г.Душанбе, октябрь 1972г.), на Республиканской научной конференции по уравнениям математической физики (Душанбе, 27-28 сентября 1983г.), на Всесоюзной конференции по теории функций и приложениям функционально-дифференциальных уравнений (Душанбе, 27 декабря
1987г.),на Всесоюзной школе молодых ученых "Функциональные методы в прикладной математике и математической физике" (Ташкент, 11-17 мая1988г.), на Республиканской научной конференции, посвященной памяти Т.Собирова "О некоторых применениях функционального анализа в теории дифференциальных уравнений". (Душанбе, 1990г), на Международной научной конференции, посвященной 10-йгодовщине Независимости Республики Таджикистан и 80-летию профессора М.А. Субханкуло-ва "Методы теории функций и их приложения" (Душанбе, 5-7 сентября 2000 г.), на Республиканской научно-теоретической конференции, посвященной 70-летию профессора М.М. Каримовой "Современные проблемы теории функций, дифференциальных уравнений и их приложения" (Душанбе, 2007г.), на Республиканской научной конференции, посвященной 60-летию образования ТГНУ и 70-летию академика АН РТ Н.Р. Раджа-бова " Дифференциальные и интегральные уравнения" (Душанбе, 2008г.), на Ежегодных апрельских научно-практических конференциях ТГНУ. (Душанбе, 1970-2008 гг.), на Международной конференции "Наука и современное образование, проблемы и перспективы", посвященной 60-летию ТГНУ (Душанбе, 2008г), на Международной научной конференции "Современные проблемы физики", посвященной Году образования и технического знания (Душанбе, 2010г.) и на научном семинаре член-корр., профессора Х.Х.Муминова, на седьмой научно-практической конференции (Прага 2011г.).
Публикации. По теме диссертации опубликовано 40 работ.
Структура и объем работы. Диссертация состоит из введения, семи глав и списка литературы. Работа изложена на 152 страницах машинописного текста.