Введение к работе
Актуальность темы. В последние десятилетия широко используются в различных областях науки и техники сильноточные плазменные системы (СПС). Это генераторы низкотемпературной плазмы в физико-химических исследованиях, высокотемпературных технологиях, плазменной металлургии и сварочном производстве, ускорители плазмы и ионные инжекторы в плазмодинамике и плазмооптике, ракетно-космической и вакуумной технике, источники высокоинтенсивного излучения для задач квантовой электроники, радиационного нагрева летательных аппаратов при имитации входа в плотные слои атмосферы и др.
Дальнейшее их внедрение и применение в промышленности выдвигают задачи совершенствования существующих и создания новых типов плазменных устройств, отвечающих комплексу повышенных требований к надежности, КПД и работоспособности. Решение этих задач тесно связано с проблемой повышения ресурса электродов СПС и, в особенности, катодов - элементов, находящихся в непосредственном контакте с плазмой разряда в экстремальных условиях по уровням тепловых потоков, радиационных излучений, температур и плотностей тока.
В большинстве применяемых в научных исследованиях и инновационных технологиях СПС в качестве материалов для катодов используются тугоплавкие металлы (W, Mo, Ta и др.), легированные окислами редкоземельных металлов. Активирующие элементы, обладая меньшей работой выхода электронов, чем основной металл, улучшают его эмиссионные характеристики, что позволяет значительно снизить уровень рабочих температур и расширить токовый диапазон функционирования катода. Реализуется термоэмиссионный режим с исключительно малой удельной эрозией, повышаются чистота генерируемой плазмы и ресурс работы электрода. Однако в процессе работы вследствие диффузии и испарения легирующего компонента, различного рода фазовых и структурных изменений в области больших градиентов температуры и плотностей тока происходит ухудшение эмиссионных и прочностных свойств материала катода, что приводит к существенному снижению его работоспособности. Закономерности этих явлений, т.е. динамика процессов электро- и тепломассопереноса в объеме металла, испарения активаторов и эмиссии заряженных частиц с поверхности, контактирующей с плазмой, определяют работоспособность и ресурс катодов данного класса. Особенность катодных и прикатодных процессов (КПП) в сильноточных плазменных устройствах заключается в том, что они образуют единую самосогласованную систему взаимосвязанных явлений, развивающихся в объеме твердого тела, на его поверхности и в прикатодной плазме. Это фундаментальное свойство системы требует при изучении процессов в одной из этих областей учета влияния процессов, протекающих в других областях, т.е. их совместного рассмотрения и анализа. В связи с этим для детального изучения динамики процессов «износа» активированных катодов необходимо проведение комплексных теоретических и экспериментальных исследований закономерностей всей замкнутой цепочки КПП в различных режимах работы плазменного устройства. Обобщенная постановка задачи особенно важна для выявления их наиболее глубинных связей и создания на этой основе научно обоснованных методов моделирования и оптимизации функциональных режимов, расчета ресурса сильноточных активированных катодов. В настоящее время эта проблема практически не исследована.
Целью работы являются:
теоретическое и экспериментальное исследование тепломассопереноса
и динамики катодных и прикатодных процессов в широком диапазоне
изменения внешних параметров сильноточных плазменных устройств;
разработка методов моделирования и оптимизации функциональных
характеристик активированных термоэмиссионных катодов.
Поставленная цель определила необходимость решения следующих
задач:
-
-
Обоснование обобщенного анализа и выявления основных закономерностей процессов взаимодействия активированного термоэмиссионного катода с газовым разрядом в процессе работы СПС.
-
Построение физико-математической модели, описывающей процессы и эволюцию системы «активированный термоэмиссионный катод - газоразрядная плазма».
-
Исследование теплофизического состояния сильноточных катодных узлов плазменных устройств.
-
Исследование физических закономерностей процессов электро-и тепломассопереноса эмиссионно-активированных термокатодов.
-
Математическое моделирование катодных и прикатодных процессов на основе эволюционной физико-математической модели и сопоставление с известными экспериментальными данными.
-
Создание установки и экспериментальное изучение динамики комплекса основных параметров катодных процессов на различных режимах функционирования активированных катодов.
-
Совместное проведение и сравнение результатов численного моделирования и экспериментального исследования динамики катодных процессов в широком диапазоне изменения внешних параметров плазменных устройств.
-
Разработка эффективных методов оптимизации функциональных характеристик и расчета ресурса работы эмиссионных термокатодов.
Научная новизна работы:
1. Теоретически обоснована и развита эволюционная физико- математическая модель КПП. Модель основана на обобщенном подходе и анализе явлений в единой системе «твердое тело - сильноточный газовый разряд», что позволило исследовать динамику процессов в взаимосвязанном и физически самосогласованном виде, выявить их наиболее общие связи и закономерности.
-
-
-
Решена нелинейная тепловая задача для составных катодных узлов сильноточных плазменных устройств. В двумерной постановке задачи впервые учтены переменность тепло- и электрофизических свойств структурных элементов конструкции, объемные (джоулево тепловыделение) и поверхностные (воздействие плазмы разряда, конвективный и радиационный теплообмены) источники и стоки тепла, что существенно повысило точность расчета температурного поля катодного узла.
-
Поставлена и решена в двумерном приближении задача тепломассопереноса эмиссионно-легирующих элементов термокатодов. В совместной постановке решены нестационарные уравнения теплопроводности, непрерывности тока, диффузии и испарения активатора с нелинейными граничными условиями с учетом зависимости свойств материала электрода от температуры. Изучены закономерности распределения концентрации и динамики выхода активаторов из объема электродов в широком диапазоне изменения внешних параметров СПС.
-
Предложен метод моделирования дугового разряда, позволяющий рассчитать в двумерном приближении положительный столб и область прикатодной контракции. Последовательное рассмотрение влияния данной области на катодные процессы, проведенное при решении обобщенной физически самосогласованной и математически замкнутой задачи, значительно приблизило теоретические результаты к экспериментальным.
-
Реализован комплексный метод экспериментального исследования динамики основных параметров катодных явлений в процессе работы активированных термоэмиссионных катодов. Получены систематические данные эволюции физического состояния термокатодов на различных функциональных режимах в широком интервале времени.
-
Теоретически и экспериментально исследованы закономерности и динамика основных параметров КПП в зависимости от тока разряда, давления и рода плазмообразующего газа, геометрии, свойств материала и условий теплообмена электродных узлов. Выявлены и изучены механизмы, определяющие работоспособность и ресурс активированных катодов.
-
Спектрографически изучена кинетика тяжелых частиц металла в приэлектродных областях дугового разряда. Получено прямое экспериментальное подтверждение явления ионно-атомного рециклинга в прикатодной зоне стационарного дугового разряда. Показано, что в прианодной зоне данный эффект отсутствует ввиду уноса ионов электрическим полем от поверхности электрода.
Основные положения и результаты, выносимые на защиту:
-
-
-
-
Особенности теплофизического состояния составного катодного узла СПС с учетом нелинейных зависимостей свойств материалов от температуры, джоулева тепловыделения в объеме и комбинированного энергообмена на поверхности конструкции.
-
Закономерности процессов электро-и тепломассопереноса и испарения эмиссионно-активирующих элементов сильноточных термокатодов в зависимости от их характеристик и внешних параметров плазменного устройства.
-
Эволюционная физико-математическая модель, описывающая физическое состояние и динамику самосогласованной системы «активированный термоэмиссионный катод - дуговой разряд» в процессе работы плазменного устройства.
-
Методы расчетно-теоретического изучения основных параметров катодных и прикатодных явлений, моделирующие функциональные режимы и динамику процессов активированных термокатодов в сильноточных электродных узлах.
-
Динамика и взаимосвязь основных параметров катодных и прикатодных процессов в различных режимах работы активированных термоэмиссионных электродов.
-
Критерии оптимизации и методы моделирования функциональных характеристик твердотельных термоэмиссионных катодов с конкретным расчетом их ресурса.
-
Результаты экспериментального исследования кинетики атомов и ионов металла в приэлектродных областях стационарного дугового разряда. Механизм ионно-атомного рециклинга в прикатодной зоне.
Научная достоверность результатов подтверждается сопоставлением результатов математического моделирования с экспериментальными, согласием теоретических и опытных данных, полученных различными методами, а также соответствием их результатам других авторов.
Практическая значимость работы:
-
-
-
-
-
Разработан научно обоснованный математически и физически замкнутый метод моделирования и оптимизации функциональных характеристик твердотельных термоэмиссионных катодов, позволяющий рассчитать их ресурс.
-
Обоснованы и выработаны практические рекомендации и критерии по определению оптимального режима работы термокатодов с максимальным ресурсом.
-
Предложен эффективный инженерный метод оптимизации токовой нагрузки и теплового состояния термоэмиссионных катодов.
-
Разработанные расчетно-теоретические методы и численные алгоритмы реализованы в виде пакета прикладных программ и могут быть использованы при исследовании КПП, конструировании и оптимизации катодных узлов плазменных устройств широкого класса и назначения.
Личный вклад автора состоит в его определяющей роли при постановке цели и задач исследования, их теоретическом и экспериментальном выполнении, интерпретации и обобщении полученных результатов. В опубликованных совместных работах по теме диссертации автору принадлежит решающий вклад.
Апробация работы. Основные результаты диссертационной работы докладывались и обсуждались на Всесоюзной конференции «Научно- технический прогресс в машиностроении и приборостроении» (Москва, 1980), Всесоюзных конференциях по генераторам низкотемпературной плазмы (Новосибирск, 1980, 1989; Фрунзе, 1983), VI Всесоюзной конференции по физике низкотемпературной плазмы (Ленинград, 1983), Всесоюзном совещании по нестационарным дуговым приэлектродным процессам (Алма-Ата, 1991), IX International Conference on Vibrations at Surfaces (Hayama, Japan, 1998), Всероссийских семинарах «Моделирование неравновесных систем» (Красноярск, 1999, 2001, 2005), X Всероссийской конференции по физике дугового разряда (Рязань, 2000), III Международной конференции по плазменно-энергетическим процессам и технологиям (Улан- Удэ, 2000), X International Conference on Vibrations at Surfaces (Saint Malo, France, 2001), International Conference on Organization of Structure in Open Systems (Almaty, 2001), III Всероссийской конференции по молекулярной физике неравновесных систем (Иваново-Плес, 2001), International Conference on Physics at Surfaces and Interfaces (Puri, India, 2002), XI International Congress on Plasma Physics (Sydney, Australia, 2002), Международной конференции «Радиационно-термические эффекты и процессы в неорганических материалах» (Томск, 2004), XII International Congress on Plasma Physics (Nice, France, 2004), III Международной конференции «Энергосберегающие и природоохранные технологии» (Улан-Удэ, 2005), II Международном семинаре «Плазменная эмиссионная электроника» (Улан-Удэ, 2006), Всероссийской конференции по физике низкотемпературной плазмы (Петрозаводск, 2007), Всероссийских конференциях «Наноматериалы и технологии» (Улан-Удэ, 2008, 2009, 2010), научных семинарах в Московском государственном техническом университете им. Н.Э. Баумана, Физико- техническом институте им. А.Ф. Иоффе РАН, Институте теплофизики им. С.С. Кутателадзе СО РАН, Институте теоретической и прикладной механики им. С.А. Христиановича СО РАН, Отделе физических проблем БНЦ СО РАН, Бурятском государственном университете.
Публикации. По теме диссертации опубликованы 82 печатные работы, в том числе 1 монография, 2 препринта, 22 статьи в рецензируемых журналах, из них 17 из перечня ВАК.
Структура и объем работы. Диссертация состоит из введения, 6 глав с выводами, заключения, списка использованной литературы и приложения. Содержит 253 страницы текста, 76 рисунков, 4 таблицы и библиографию из 328 наименований.
Похожие диссертации на Тепломассоперенос и динамика катодных и прикатодных процессов сильноточных плазменных систем
-
-
-
-
-
-
-
-
-
-