Содержание к диссертации
Введение
ГЛАВА I. Физические процессы на шельфах морей и в устьях рек и их изучение 3
1.1. Исходные уравнения и граничные условия .. 8
1.2. Характерные особенности циркуляции вод шельфа и устьев рек. Анализ наблюдений . 21
1.3. Основные направления теоретического моделирования гидродинамики шельфа и устьев рек 38
ГЛАВА 2. Инструментальное доследование гидродинамики шельфа и устьев рек 47
2.1. Прямые измерения вертикальной структуры мелкомасштабной турбулентности при нагоне на шельфе Каспийского моря
2.2. Наблюдения изменчивости гидрофизических процессов в поле бриза на шельфе Черного моря
2.3. Инструментальное исследование течений в устье реки Волги ?4
ГЛАВА 3. Теоретическое моделирование течений в устьях рек и прилегащих шельфових водах
3.1. Одномерная модель течений в устьях рек
3.2. Трехмерная модель течений в устьях рек. ^
3.3. О влиянии ветра на течения в устья рек. *29
ГЛАВА 4. Теоретическое модблирование циркуляции на шелье І47
4.1. Модель прибрежной циркуляции обусловленной сгонно-нагонными ветрами *47
4.2. Модель прибрежной циркуляции обусловленной бризом
4.3. О резонансных явлениях в верхнем слое моря при бризе
заключение
литература
- Характерные особенности циркуляции вод шельфа и устьев рек. Анализ наблюдений
- Основные направления теоретического моделирования гидродинамики шельфа и устьев рек
- Наблюдения изменчивости гидрофизических процессов в поле бриза на шельфе Черного моря
- Трехмерная модель течений в устьях рек.
Введение к работе
Согласно принятому в 1953 году международному опрвделв-нию,шельф - это мелководная зона, простиравшаяся вдоль материков от линии малой воды до глубины, на которой становится заметным увеличение наклона дна в сторону возрастающих глубин. Зона, где такое увеличение угла наклона имеет место, называется краем шельфа. Обычно она располагается на глубине около 200 м и является внешней, океанской его границей, за краем которой начинается континентальный склон, оканчивающийся областью отложения осадочных пород - континентальным подъемом, переходящим в ложе океана (абиссаль).
Внутреняя граница шельфа проходит вдоль линии малой вода у суши и захватывает устья рек. Воздействие шельфа на нижний участок реки является определяющим, так что устьем реки можно назвать её нижний участок, где режим реки сильно изменен влиянием моря или океана, в который она впадает. Обратное воздействие реки на шельф также может быть очень существенным, например Сем. 3.2 данной диссертации), воды Амазон-ки распространяются в океан на расстояние порядка нескольких тысяч километров. Эти обстоятельства в сущности и обусловили содержание диссертации - мы будем изучать здесь гидрофизи -ческие процессы в устьях рек и на шельфе, а также их взаимное влияние, очень сложное и почти не исследованное в настоящее время.
Изучение шельфов и устьев рек необходимо для решения многих научных и народохозяйственных проблем. Среди них основное место занимают проблемы обеспечения страны водными, пищевыми, минеральными и энергетическими ресурсами, а также
- 5 -решение многочисленных задач, обусловленных потребностями морского хозяйства, морского промысла, морского транспорта, строительства, сельского хозяйства, медицины. Программа КПСС ставит задачу наиболее эффективного использования богатств и сил природы в интересах народа. Решение этой задачи требует глубоких научных знаний процессов,происходящих в природе, в частности физических процессов, происходящих в шельфовой зоне и в устьях рек.
Динамика устьев рек, эстуариев, фиордов и шельфов настолько своеобразна, что по данному вопросу имеется своя обширная литература, как периодического, так и монографического характера. Движению вод в устьях рек и на шельфах, присущи многие закономерности,характерные для речных потоков. С другой стороны, воды в устьях рек часто стратифицировании по температуре и солености, что вовсе не характерно для речных потоков и наоборот сближает динамику устьев рек с динамикой океанов и морей. Очевидно, что устье реки и прилегающие шельфовые воды нельзя считать ни рекой, ни морем, а справедливо выделять в особую, переходную, пограничную область взаимодействия реки и моря или океана.
Отмеченная особенность шельфов и устьев рек пограничных
областей сразу же показывает основную трудность, возникающую при гидродинамическом моделировании этих уникальных природных объектов. Известно, что факторы, являющиеся пренебрежимо малыми в основном потоке, становятся существенными при изучении пограничных слоев. В устьях рек и на шельфах это правило приводит к тому, что для полного и точного описания их необходимо использовать полные уравнения гидромеханики турбулент-
но движущейся жидкости. Возможность пренебрежения каким-либо членом уравнений отсутствует и именно это обстоятельство представляло основную трудность для первых исследователей гидродинамики устьев рек и прилегащих шельфовнх вод, основные усилия которых были направлены в сторону поиска путей разумного упрощения задачи.
Несмотря на невозможность упрощения задачи в общем случае, определенные успехи на этом пути были достигнуты при изучении устьев отдельных рек, например, при исследовании устьев рек Потомак, Джеймс, Коннектикут и других. Очевидным недос -татком такой тенденции, распространенной в настоящее время довольно широко, является потеря общих подходов к решению задачи. В результате, исследователи отдельных участков шельфа или устьев рек перестают понимать друг друга, а литература по рассматриваемой тематике изобилует региональными исследованиями отдельных устьев или отдельных участков шельфа, никак не связанных друг с другом. И хотя устья отдельных рек или отдельные участки прибрежной зоны действительно часто отличаются друг от друга и допускают различные упрощения задачи, необходимо помнить, что конечной целью исследований является построение общей, внутренне непротиворечивой теории, выводы из которой соответствуют наблюдениям и которая способна описать любой шельф или любое устье. Построение подобной теории нужно начинать с анализа основных факторов,определяющих динамику рассматриваемых областей?к числу которых нужно отнести ветер и речной сток, пространственную неоднородность поля плотности, приливообразующие силы, силу Кориолиса, рельеф дна и боковые границы, а также потоки тепла, соли и вещества
- 7 -через границы рассматриваемой акватории.
Цель диссертации, изучение нескольких из указанных факторов, в частности исследование влияния ветра, стока реки, пространственной неоднородности поля плотности и боковых границ на циркуляцию в шельфовой зоне моря и в устьях рек. Метод исследования, применённый нами для решения поставленной задачи - инструментальные наблюдения и теоретическое моделирование.
Диссертация состоит из четырех глав. В первой главе работы рассматриваются исходные уравнения и граничные условия, позволяющие ставить и решать различные физико-математические задачи,с помощью которых изучается циркуляция вод на шельфах и в устьях рек. Рассматриваются характерные особенности этой циркуляции, а также основные направления её теоретического моделирования. Во второй главе диссертации описываются наблюдения, проведенные автором в экспедициях на шельфах Каспийского и Черного морей, а также в устье реки Волги. Наблюдаемая структура гидрофизических полей в шельфовой зоне этих морей и в устье Волги исследуются в третьей и четвертой главах диссертации с помощью теоретических моделей. Приводится сравнение результатов расчетов с наблюдениями. В заключении резюмируются основные результаты полученные в работе, а также намечаются пути дальнейших исследований.
Характерные особенности циркуляции вод шельфа и устьев рек. Анализ наблюдений
Методы подобия и размерности не позволяют определить вид функции г . Для этого необходимы либо детальные измерения, либо математическое исследование. К задаче С 1.35) - С 1,45) мы вернемся в третьей и четвертой главе диссертации. А теперь изучим наблюдаемые особенности циркуляции вод на шельфе и в устьях рек, а также основные направления теоретического моделирования этой циркуляции.
Рассмотрим основные характерные особенности циркуляции вод на шельфах и в устьях рек,по данным наблюдений опубликованным в литературе. Нас будет интересовать наблюдаемая структура гидрофизических полей в этих областях, в достаточно крупных масштабах, сравнимых с их размерами, а также те основные физические процессы, которые ее формируют. Мы будем двигаться от внешней морской границы шельфа к внутренней, изучив сначала особенности циркуляции вод на самом шельфе, а затем остановимся на циркуляции вод в устьях рек.
Данные наблюдений показывают, что в средних широтах,в теплый сезон на шельфе наблюдается устойчивая вертикальная плотяостная стратификация. Изменения плотности по глубине определяются преимущественно температурой. В слое, примыкающем к поверхности воды, формируется перемешанный слой, ниже которого образуется термоклин. В результате воздействия раз личных факторов, происходит изменение температуры и толщины перемешанного слоя и термоклина, так что температурное поле шельфа в значительной степени зависит от характера протекающих здесь гидрофизических процессов и поэтому может служить их индикатором.
В начале периода прогрева, поступащее на поверхность моря тепло сосредотачивается в очень тонком слое воды вблизи этой поверхности. Если ветер отсутствует, то в результате процессов молекулярной теплопроводности формируется профиль температуры затухающий с глубиной, как это видно, например, из рис. I. С появлением ветра возникают волны и дрейфовые течения, в результате неустойчивости которых в слое воды у поверхности моря, ТОЛЩИНОЙ несколько десятков метров, генерируется турбулентность. Тепло, воледствии турбулентного перемешивания,перераспределяется по вертикали, образуя квазиотермический слой. По мере возрастания потока тепла на поверхности моря увеличивается температура этого слоя. Ниже его формируется слой скачка температуры,мощность которого также возрастает с увеличением прогрева поверхности моря. Архимедовы силы в слое скачка препятствуют развитию здесь интенсивной турбулентности, поэтому большая часть посту -пающего к морю тепла сосредотачивается в квазитермическом слое. Таким образом, чем больше тепла поступает на поверхность моря или океана, тем тоньше квазитермический слой, ближе к поверхности расположен слой скачка температуры и тем больше затруднен перенос тепла в глубинные слои океана. При охлаждении океана (моря), вследствии понижения температуры его поверхности возникает усиленная конвективная турбулентность. Толщина перемешанного слоя W возрастает, его темпе ратура п:0 падает, а градиенты температуры в слое скачка уменьшаются. К концу периода охлаждения толщина 1г достигает максимальных значений. Температура перемешанного слоя в это время минимальна и близка к температуре нижней границы термоклияа ri , скачок температуры полностью разрушен, й верхний слой океана стратифицирован почти нетрально.
Описанная эволюция вертикальной термической структуры верхнего слоя океана типична не только для шельфа, но и вообще для средних и умеренных широт любого района океана -см. работы Монина, Каменковича и Корта (1974), Алексеева, Блохиной, Гусева и Пановой (1979), Арсеньева и Фельзеябау-ма (1976, 1977),Пивоварова (1978), Арсеньева (1977) и других авторов. Исключением является экваториальная область (примерно до 10 широты), где временные изменения термических характеристик по вертикали выражены очень слабо. В полярных областях эти изменения также почти не выражены по температуре, но имеют место для солености, что связано с образованием и таянием льдов на поверхности океана.
Таким образом, основными факторами,определяющими вертикальную термическую структуру верхнего слоя океана в области средних и субарктических широт, являются турбулентное перемешивание и нагрев (или охлаждение) поверхности океана. Другие факторы играют меньшую роль, однако при определенных условиях их влияние может стать определяющим. К этим факторам относятся: 1. Горизонтальный перенос (адвекция) тепла прибрежными течениями различного происхождения. 2. Инерционные колебания, поверхностные и внутренние гравитационные волны, приливы и другие процессы волнового характера, 3« Объемное поглощение солнечной радиации. 4. Лэнгмюровская циркуляция и вихреобразование, связанные с неустойчивостью течений в пограничных слоях.
Интенсивность этих процессов определяется дующим над поверхностью воды ветром, потоком тепла на поверхности океана, влиянием боковых границ бассейна, особенностями рельефа дна и потоком тепла через дно океана.
Рассмотрим подробнее перечисленные выше процессы в свете опубликованных в литературе данных.
Горизонтальная адвекция на шельфе может быть вызвана течениями,обусловленными сгонно-нагонными и бризовыми ветрами, а также крупномасштабными течениями, связанными с общей циркуляцией моря или океана.
Основные направления теоретического моделирования гидродинамики шельфа и устьев рек
При построении гидродинамических моделей циркуляции вод на шельфе в качестве основы могут быть использованы модели разработанные для верхнего слоя открытого океана,с учетом изученной в предыдущем параграфе специфики шельфа. Рассмотрим поэтому сначала вкратце основные направления моделирования верхнего слоя открытого океана.
Обзор литературы выполненный Зилитинкевичем, Реснянским и Чаликовым (1978), Ниилером и Краусом С1979), Калацким (1978) показывает, что существующие теоретические модели верхнего слоя океана можно условно разбить на две группы.
В первой группе моделей ставятся и решаются задача формирования и эволюции вертикальных полей температуры, течений и турбулентности в верхнем слое океана в течении заданного промежутка времени. Поскольку в этой группе моделей используются дифференциальные уравнения сохранения импульса, тепла и энергетические уравнения для описания турбулентности, они получили название; "дифференциальные" модели верхнего слоя океана. Дифференциальные модели решают задачу определения характеристик верхнего слоя океана полностью. Однако при этом --см., например, работы Марчука с коллегами (1976, 1978), Кочер-гина, Климока и Сухорукова (1976, 1977) - требуются специальные, довольно сложные вычислительные схемы и мощные ЭВМ.
Во второй группе моделей используются проинтегрированные по вертикали уравнения сохранения, поэтому они получили название "интегральных" моделей верхнего слоя океана, "Интегральные" модели обладают определенными преимуществами, сущность которых состоит в следующем:
1. Используются более общие чем дифференциальные - ин тегральные уравнения и их решения, не требующие непрерывнос ти определяемых функций. Поэтому в "интегральных" моделях легко описываются области резких изменений этих функций: скачки температуры, солености, плотности, скорости течений и т.п. - см. работы Арсеньева и Фельзенбаума (1975), Арсень-ева, Сутырина и Фельзенбаума (1976), Уизема (1977).
2. Интегрирование по вертикали позволяет свести трёх -мерную задачу к плоской - исключается вертикальная координата Задача существенно упрощается и становится доступной для реализации на обычных ЭВМ - см. подробнее работы Фельзенбаума (1968, 1970, 1974, 1976, 1980).
3. Отпадает необходимость задавать коэффициенты турбулентного обмена теплом, солью и массой и их вертикальное распределение, о которых в настоящее время известно очень мало.
В отличие от "дифференциальных" моделей, "интегральные" модели не решают задачу подробного воспроизведения вертикальных профилей характеристик верхнего слоя океана, ограничиваясь расчетом наиболее важных особенностей этих профилей. Однако, благодаря простоте и способности довольно точно отобразить физику явления, "интегральные" модели нашли применение при решении многих задач. Среди них: прогноз суточных, синопти -ческих и сезонных изменений характеристик верхнего слоя океана - см., например, работы Арсеньева и Фельзенбаума (1976, 1977), Реснянского (1976), Калацкого (1978); изучение синоп -тических вихрей океана с использованием спутниковой информации - см. работы Нелепа, Куфтаркова и Коснырева (1977, 1978); моделирование взаимодействия океана и атмосферы, и климата Земли - см. обзор Зилитинкевича, Реснянского и Чаликова (1978); биологический прогноз в море - см. работы Денмана и Длатта (1979); моделирование апвеллингов на шельфе и в откры-том море океане - см. обзор О Брайна с соавторами (1979) и статьи Арсеньева, Сутырина и Фельзенбаума (1976), Шелковни-кова и Арсеньева (1982).
Рассмотрим опыт применения "интегральных" моделей для исследования апвеллингов на шельфе. Наиболее полно, к нас -тоящему времени, разработаны двумерные, двуслойные нестационарные модели прибрежного апвеллинга, включающие эффекты вовлечения на поверхности раздела перемешанного слоя и термо-клина, а также эффекты объемного поглощения солнечной радиации - см. работу О Брайна с соавторами (1979). С помощью этих моделей удается воспроизвести такие важные особенности крупномасштабной циркуляции на шельфе, как формирование поверхностных и придонных вдольбереговых и нормальных к берегу течений, наблюдаемые аномалии глубины пикноклина, наклонов и температуры поверхности у восточных берегов океанов, очень важную роль открытого океана в моделях прибрежного апвеллинга, удается понять, по крайней мере качественно, как влияет эффект вовлечения на перенос импульса тепла и массы через слой скачка температуры (плотности), а также воспроиз-вести многие наблюдаемые особенности апвеллинга на шельфе, например, двух ячейковую циркуляцию, или вторичный апвеллинг на кромке шельфа, изучить влияние апвеллинг таких важных факторов как рельеф дна, горизонтальная неоднородность поля ветра и стратификация. Имеется также очень интересный, пионерский, опыт использования таких моделей не только для моделирования крупномасштабной циркуляции на шельфе, но и для исследования мезомасштабного явления: взаимодействия апвеллинга и бризовой циркуляции на шельфе
Наблюдения изменчивости гидрофизических процессов в поле бриза на шельфе Черного моря
Представленные в предыдущем параграфе наблюдения показывают структуру мелкомасштабной турбулентности на шельфе при нагоне. Более подробную информацию о крупномасштабной структуре гидрофизических полей на шельфе при сгонно-нагон-яых явлениях, мы получим в данном параграфе, изучив реакцию шельфовых вод на бриз.
Бриз, то есть ветер, дующий на берегах океанов, морей, больших озер и водоемов, является типичным природным явлением тропических и умеренных широт, где он наблюдается весь год или в теплый сезон - см. книгу Хргиана (1978). Морской или дневной бриз зароадается утром, когда воздух над сушей теплев, чем над морем. Он возникает в открытом море вдали от берега и распространяется в сторону суши со скоростью примерно вдвое меньшей скорости ветра равной приблизительно 2 м с"" на 1 разности температур. В течение дня бриз проникает в глубь суши ; например, на побережье Черного моря на 15-20 км, вблизи Таллина - на 20 км, в тропических странах - до 200 км. Со временем бриз поворачивает по часовой стрелке и ночью дует с суши. Береговой или ночной бриз обычно слабее дневного и накрыт сверху инверсией. Инверсионность бриза определяется разностью температур суша-море, поэтому его изучение зави сит от степени наших знаний изменчивости верхнего слоя моря в области шельфа. С другой стороны, в самом верхнем слое моря действием бриза индуцируются значимые изменения гидрофизических и биологических характеристик,изучение которых представ - 59 ляет самостоятельный интерес.
Исследование реакции верхнего слоя океанов и морей на бриз началось недавно - см. 1,2 и 1.3. Недостаточная изученность этого явления побудила кафедру физики моря и вод суши Физического факультета МГУ провести в летний сезон 1978--1979 гг серию метеорологических и гидрофизических наблюдений на шельфе Черного моря, вблизи побережья Крыма и Кавказа , Измерения проводились с НИС "Горизонт", стоящего на якоре, в 1,5-2 милях от берега. Комплекс наблюдений включал: измерение вертикальных профилей скорости и направления течений, температуры, электропроводности, а также характеристик турбулентности в море. Измерения солнечной радиации, температуры, влажности и давления воздуха, скорости и направления ветра на высоте 10 метров от невозмущенной поверхности моря. Измерения уклонов дна с помощью эхолота.
Измерения проводились каждые полчаса, в течение нескольких суток. Аппаратура и методика измерений подробно описана в работе Тимофеева (1980). Отметим, что использование в гидрофизических измерениях падающих зондов, подобных зондам сшясанным Арсеньевым, Булгаковым, Миропольским и Пантелеевым (1978), позволило полность исключить влияние качки корабля на результаты наблюдений.
По вертикальным профилям температуры и электропроводности с помощью океанологических таблиц были восстановлены профиля солености и плотности. Изменения солености по глубине оказались незначительными: 0,2 - 0.4% , а среднее ее значение оказалось равным 17.5%. Расчеты показали также, что основной вклад в изменения плотности вносят изменения температуры, а изменениями солености с точностью около 1% можно пренебречь. Ошибки измерений каналов температуры, электропроводности, скорости и направления течений, а также ошибки определения солености и плотности составляли
Общее число станций, на которых были проведены наблюдения, равно четырем. В настоящем параграфе мы подробно проанализируем результаты наблюдений на оДной станций - станции Л 4 , выполненной у побережья Кавказа в районе Сочи в течение 8 суток: с 3 августа 1979 года по II августа 1979 го-да. Глубина моря на этой станции 34 метра, уклоны дна 2.5 10" .
На рисунке 5 приведены вертикальные профили основных гидрофизических характеристик: температуры П Сі), ее верти-кального градиента С 2), дисперсии флуктуации температуры Сз), модуля скорости течения 5 (4), среднеквадратичного от-клонения флуктуации скорости течения (5), условной плотности С 6), частоты Вяйсяля-Брента /\/ (7) и числа Ричардсона \ l С8), подученные осреднением по всем 8 суткам так, что они отражают средний гидрологический фон, на котором развиваются более быстрые процессы, например, рассматриваемая ниже суточная изменчивость. На рисунке 6 приведены для сравнения мгновенные профили скорости течения и температуры, а также профиль коэффициента вихревой вязкости А, найденный прямыми измерениями флуктуации продольной и вертикальной составляющей скорости течения - см. подробнее предыдущий параграф.
Трехмерная модель течений в устьях рек.
Рассмотрим случай постоянных, независящих от пространственных координат величин \ , И и \ . Основное уравнение теории (3.55) сводится в этом случае к уравнению Лапласа для решения которого мы выберем метод теории функций комплексной переменной. Этод метод позволит нам применить к задаче об установившихся течениях в устьях рек несколько классических результатов, полученных в теории плоских, идеальных движений несжимаемой жидкости и в электродинамика. В соответствии с теорией функций комплексного переменного, для решения уравнения (3.72) нужно ввести вспомогательную гармоническую функцию КР Х ъ Э (3.73) сопряженную функции тока Ч/ и имеющую смысл скалярного потенциала поля потоков S . Тогда, решение задачи сводится к математической задаче отыскания конформного преобразования « ОЧ + О У (3,74) отображающего плоскость комплексного переменного г =х + С на плоскость комплексного потенциала поля полных потоков т . Согласно условию (3.56), берега рассматриваемой области должны переходить в прямые 1,- т = \(\ ) = cuit .
В качестве первого примера рассмотрим задачу определения установившихся течений в устьях с берегами выступающими в море в виде канала, ограниченного двумя параллельными стенками - см, рисунок 23а, Подобная конфигурация берегов наблвдается в устьях вследствии естественного намыва песчаных кос и островов по бокам канала, например: отдельные рукава в устьях рек Волги (см. фото 3 в 2,3), Дуная и Миссисипи, или вследствие искуственных дноуглубительных работ, например: устье реки Урал. Начало координат расположим на конце канала, в его середине, считая, что ширина канала Ь и расход воды Q„ В нем известны. Конформное преобразование переводит плоскость S = м с двумя разрезами ( vj = - - при У со ) в слой Vb 6 4 плоскости Ч? - см, рис.23 и книги Тихонова и Самарского (1966), Свешникова и Тихонова С1967), Лэмба (1947), Коппеяфельса и Штальмана (1963). Опре-деляя размерный комплексный потенциал в виде найдем потенциал и функцию тока поля полных потоков в рас -сматриваемой задаче причем эти величины связанны с координатами х и у соотношениями
Координатные оси а , линии тока полного штока с и плоскость безразмерного комплексного потенциала в дая устья выступающего в море в виде канала с параллельными стенками Используя теперь известную теорему о связи вектора поля с производной комплексного потенциала (черточка означает комплексно сопряженную величину) и форму-лу (3.80) , найдем
Формулы (3.82), (3,83) и (3.78), (3.79) и дают решение зада-чи в параметрическом виде. Именно, задавая всевозможные значения й у сначала находим из этих формул функции Sx(xv\)} и ( о ). Затем, по формулам (3.52), (3.53) и (3.50), (3.51) вычисляем наклоны уровня и горизонтальные составляющие скороти течения Ч и \г Наконец, используя уравнение (3.49) и найденное решение для Л И \Г, определяем вертикальную составляющую скорости течения VT.
На рис. 236 приведены результаты расчетов линий тока полных потоков для семи равностоящих значений функций Ф , на рис. 24, 25 - расчеты поперечного распределения составляющих скоростей течений на поверхности воды ( = о ) в ка Рис.24 .Расчет поперечного распределения продольной составляющей скорости течения на поверхности воды для устья выступающего в море в виде канала с паралельними стенками с рис.230. Устье мелкое или расположенное на экваторе G& =0) » ветер отсуствует С Т =0 )
Расчет поперечного распределения поперечной составляющей скорости течения на поверхности воды в устье,соответствующий рис.24 нале, на выходе из него и на взморье, а на рис. 26 - соответствующие расчеты модуля скоростей течений Е . Исследаь вался случай небольших глубин или приэкваториальная область С Л = 0 ) и ветер считался отсутствующим С Т = 0; штиль). Для удобства мы ввели на рис. 24, 25 и 26 два новых обозначения: t c - скорость течения в канале на большом расстоянии от устья, С -Ці - полуширина канала.
Как видим даже в этом, очень простом примере распределение течений на выходе из канала имеет сложный вид, в частности отчетливо фиксируется бифуркация - модуля скорости те Р чений. Это явление наблюдалось ранее в лаборатоных экспериментах Самойлова (1952) и до сих пор не нашло ябъяснения. Из полученного решения следует, что бифуркация потока на выходе из канала обусловлена возникновением поперечной скорости Т и концевыми эффектами на краях устья