Введение к работе
Актуальность темы исследования.
Интерес к физическим явлениям в квантовых системах релятивистских фермионов в присутствии интенсивных внешних полей в пространствах пониженных размерностей вызван возможностью применения этих моделей для изучения эффекта Ааронова-Бома, квантового эффекта Холла, высокотемпературной сверхпроводимости, а также физических процессов в присутствии космических струн.
Новый интерес к различным эффектам в двумерных квантовых системах появился после успешного получения монослоя графита (графена). При низких энергиях динамика электрона в графене описывается двух-компонентным уравнением Дирака для фермионов с нулевой массой, поэтому электроны в графене дают интересные реализации квантовой электродинамики в 2+1 измерениях. В то же время "эффективная постоянная тонкой структуры" в графене велика, и появляется новая возможность изучения квантовой электродинамики в режиме сильной связи. Отметим также, что высокая подвижность носителей заряда графена делает его весьма перспективным материалом для современной электроники, спинтроники, оптоэлектроники и т.д.
Известно, что при изучении уравнения Дирака с сингулярными внешними потенциалами возникает проблема полноты некоторых найденных наборов точных решений уравнения Дирака. Дело в том, что гамильтониан Дирака с сингулярными внешними потенциалами требует дополнительного доопределения для того, чтобы его можно было трактовать как самосопряженный квантово-механический оператор. В этом случае существует целое семейство самосопряженных гамильтонианов, поэтому сначала необходимо найти все самосопряженные расширения данного симметрического оператора и затем выделить корректный самосопряженный гамильтониан с помощью физически приемлемых граничных условий в точке сингулярности гамильтониана.
Необходимость доопределения видна на примере задачи о движении электрона в сильном кулоновском поле. Действительно, в кулоновском поле, заданном 4-векторным потенциалом А0(г) = а/(еог), А = 0, а > О (е = —ео < 0 заряд электрона), энергия электрона в основном состоянии Ед = тл/l — а2 обращается в нуль при а = 1, а при а > 1 интерпретация этой формулы как энергии электрона теряет смысл. Дираковский гамильтониан в сильном кулоновском поле точечного заряда (при а > 1) стано-
вится неэрмитовым в источнике, и возникает необходимость доопределения гамильтониана. В литературе для построения самосопряженных расширений гамильтониана обычно используется метод физической регуляризации, в которой вместо точечного источника рассматривается потенциал, обрезанный на малом расстоянии Л, что соответствует учету конечных размеров источника поля.
Диссертационная работа посвящена квантово-механическому описанию движения массивных и безмассовых электрически заряженных фермио-нов в двумерных кулоновских (векторном и скалярном) и Ааронова-Бома потенциалах. Для этого построены все самосопряженные гамильтонианы Дирака в кулоновских и Ааронова-Бома потенциалах в 2+1 измерениях с помощью так называемого метода асимметрии форм (Б.Л. Воронова, Д.М. Гитмана, И.В. Тютина), восходящего к теории самосопряженных расширений Дж. фон Неймана для симметрических операторов. Спектры самосопряженных радиальных гамильтонианов находятся методом направляющих функционалов Крейна для симметрических дифференциальных операторов.
Целью диссертационной работы является
-
Построение самосопряженных гамильтонианов Дирака в кулоновских (векторном и скалярном) и Ааронова-Бома потенциалах в 2+1 измерениях с учетом спина фермиона. Исследование спектров связанных состояний фермиона в зависимости от параметра самосопряженного расширения, спина частицы и параметров поля в физически интересных случаях.
-
Построение самосопряженных гамильтонианов Дирака в векторном кулоновском и Ааронова-Бома потенциалах в 2+1 измерениях с учетом спина частицы и их спектральный анализ. Изучение спектров связанных состояний фермиона в физически интересных случаях. Исследование спектра гамильтониана в области сверхкритических зарядов, когда низшее энергетическое состояние фермиона пересекает границу нижнего континуума энергий, а вакуум квантовой электродинамики перестраивается.
-
Доказательство существования связанного состояния фермиона в поле Ааронова-Бома в области значений параметра самосопряженного расширения 2-7Г > в > тт. Исследование рассеяния релятивистских фермионов потенциалом Ааронова-Бома в 2+1 измерениях с учетом
взаимодействия спина фермиона с магнитным полем при различных значениях параметра самосопряженного расширения. Решение задачи рассеяния спин-поляризованных электронов на тонком магнитном соленоиде в плоскости перпендикулярной оси соленоида в реалистическом случае трех пространственных измерений. Получение выражений для амплитуды и сечения рассеяния с определенными значениями проекции спина в начальном и конечном состояниях.
4. Построение самосопряженных дираковских гамильтонианов для фермиона нулевой массы в графене. Получение и изучение волновых функции виртуальных связанных состояний, спектра энергий и времени жизни этих состояний. Исследование локальной плотности состояний как функций энергии и параметров задачи.
Научная новизна работы состоит в том, что в ней впервые:
-
решена задача о квантово-механическом описании движения заряженного массивного фермиона в двумерных кулоновских и Ааронова-Бома потенциалах. Найдены все самосопряженные дираковские гамильтонианы в указанных полях с учетом спина фермиона. Получены уравнения, неявно определяющие спектры энергий, и построены собственные функции для всех самосопряженных дираковских гамильтонианов
-
построены полные наборы решений уравнения Дирака, и исследованы спектры самосопряженного гамильтониана Дирака массивного заряженного фермиона в кулоновском (векторном) и Ааронова-Бома потенциалах в 2+1 измерениях с учетом спина частицы, зависящие от параметра самосопряженного расширения;
-
построены полные наборы решений уравнения Дирака, и исследованы спектры самосопряженного гамильтониана Дирака массивного заряженного фермиона в кулоновском (скалярном) и Ааронова-Бома потенциалах в 2+1 измерениях с учетом спина частицы, зависящие от параметра самосопряженного расширения;
-
получено выражение для амплитуды и сечения рассеяния релятивистских фермионов на потенциале Ааронова-Бома при произвольном значении параметра самосопряженного расширения, что позволило исследовать физически неэквивалентные случаи задачи в соответствующем двумерном пространстве. Показано, что связанные состояния, которые
возникают вследствие взаимодействия спинового магнитного момента фермиона с магнитным полем бесконечно тонкого соленоида, оказывают влияние на состояния рассеяния;
5. построены самосопряженные дираковские гамильтонианы для фермиона нулевой массы в кулоновских и Ааронова-Бома потенциалах в 2+1 измерениях. Показано, что при сверхкритических значениях заряда кулоновского поля в системе возникает бесконечное число виртуальных (квазистационарных) связанных состояний. Экспериментально проверяемой физической величиной является локальная плотность состояний (ЛПС) как функция энергии и параметров задачи; ЛПС исследованы как аналитически, так и графически. Показано, что значение спина фермиона и параметра самосопряженного расширения может существенно влиять на ЛПС.
Практическая ценность диссертации.
Теоретические результаты, полученные в диссертационной работе могут быть использованы для описания фермиона в однослойном и двухслойном графене с кулоновской примесью в поле тонкого соленоида, а также для исследования влияния спина частицы и параметра самосопряженного расширения на спектр энергий и другие физические величины упомянутых систем.
Полученные выражения для амплитуды и сечения рассеяния спин-поляризованных электронов на тонком магнитном соленоиде в плоскости перпендикулярной оси соленоида для случая трех пространственных измерений могут быть применены для описания фермионов в поле космической струны в 3+1 измерениях.
Апробация диссертации.
Основные результаты, вошедшие в диссертацию, докладывались на XVIII международной конференции студентов, аспирантов и молодых ученых "Ломоносов-2011" (МГУ, Москва, 2011) и на научном семинаре кафедры теоретической физики МГУ имени М.В. Ломоносова.
Публикации.
Основные результаты диссертации изложены в 4 опубликованных работах, список которых приводится в конце автореферата.
Структура и объем диссертации.
Диссертация состоит из введения, четырех глав, заключения, двух приложений и списка цитируемой литературы, содержащего 101 наименований. Диссертация содержит 20 рисунков. Общий объем 102 страниц.