Введение к работе
Актуальность исследования
Несмотря на большие успехи в создании высоконадежных газотурбинных двигателей (ГТД), в эксплуатации продолжают возникать отказы двигателей, приводящие к авиационным происшествиям, снижению уровня безопасности полетов в гражданской авиации и боеготовности в военной авиации, а также к возникновению чрезвычайных ситуаций при эксплуатации воздушных судов и к снижению эффективности применения двигателей. Поэтому проблема обеспечения эффективной и безопасной эксплуатации ГТД в настоящее время является одной из приоритетных и актуальных и имеет важное народно-хозяйственное значение.
Решение данной проблемы затрудняет несовершенство применяемых методов контроля и диагностики технического состояния ГТД. Вследствие этого с эксплуатации снимаются исправные ГТД, имеющие запас ресурса; в то же время отдельные двигатели в пределах назначенных ресурсов отказывают в полете.
В настоящее время в гражданской авиации и Вооруженных силах РФ эксплуатируются ГТД выпущенные, в основном, 15-30 лет тому назад. Значительная часть парка этих двигателей близка к условиям полной выработки назначенных и межремонтных ресурсов и сроков службы. Возникла актуальная техническая задача обеспечения безопасной и эффективной эксплуатации таких ГТД путем увеличения (продления) назначенных ресурсов, сроков службы и снижения рисков возникновения чрезвычайных ситуаций при эксплуатации воздушных судов.
С другой стороны, создание ГТД новых поколений требует современных подходов к проблеме контроля, диагностики и управления их техническим состоянием, учитывающих особенности их применения и большие ресурсы.
Комплекс указанных причин порождает общую проблему повышения безопасности полетов и эффективности применения ГТД на основе разработки новых и совершенствования известных методов технической диагностики. К ним, в частности, относится метод, основанный на анализе частиц в масле системы смазки двигателя.
Значительный вклад в разработку и внедрение инструментальных методов диагностики, основанных на измерении параметров частиц, отделяемых от повреждаемых деталей в системе смазки ГТД, внесли работы ЦИАМ им П.И. Баранова, Гос НИИ ГА, 13 ГНИИ Минобороны России, ОАО «Авиадвигатель», ОАО «НПО «Сатурн», ОАО «Аэрофлот», а также работы отечественных ученых, в том числе выполненные под руководством Биргера И.А., Крагельского И.В., Кузнецова Н.Д., Смирнова Н.Н., Буше Н.А., Калашникова С.И., Степанова В.А., Ребиндера П.А., Гаркунова Д.Н., Степаненко В.П. и др.
Вместе с тем, в опубликованных трудах недостаточное внимание уделено совершенствованию методов диагностики технического состояния элементов конструкции ГТД, обобщению и систематизации данных по закономерностям повреждаемости ГТД на основе анализа металлических частиц, отделяемых от повреждаемых деталей, формированию комплексной оценки технического состояния ГТД.
В итоге остается неустраненным ряд серьезных недостатков в разработке теоретических и методологических основ способов диагностирования газотурбинных двигателей с использованием комплексной информации о параметрах металлических частиц, отделяемых от повреждаемых деталей в системе смазки двигателя.
Используемые в настоящее время инструментальные методы диагностики (атомно-эмиссионный, рентгеноспектральный, феррографический) в подавляющем большинстве случаев не позволяют предсказать повреждение по появлению металлических частиц, отделяемых от повреждаемых деталей и локализовать поврежденный узел. На это указывают данные ОАО «НПО «Сатурн»; они свидетельствуют, что лишь 5% двигателей из исследованных с помощью оборудования типа БАРС, МФС отстраняются от эксплуатации с повреждениями по превышению контрольных значений количества металлической примеси в пробе масла.
Основными причинами низкой достоверности результатов диагностики традиционным методом являются:
- недостаточность количества информации о параметрах частиц повреждаемых деталей, определяемых традиционными способами;
- неучет параметров частиц, отделяющихся от повреждаемых деталей и накапливающихся на основном маслофильтре.
Поэтому оценка технического состояния авиационных двигателей по состоянию масла системы смазки с помощью оборудования типа БАРС, МФС и визуального контроля наличия металлических частиц на магнитных пробках, магнитных стружкосигнализаторах, фильтрах-сигнализаторах в недостаточной для эксплуатации степени обеспечивает безопасность полетов и эффективность применения ГТД.
Актуальность разработки и внедрения инструментальных методов технической диагностики нового поколения диктуется объективной необходимостью в обеспечении предприятий, эксплуатирующих авиационную технику, оперативной и высокодостоверной информацией о фактическом состоянии авиадвигателей. Эта информация позволяет повысить эффективность эксплуатации по техническому состоянию авиационных ГТД и уровень безопасности полетов.
Настоящая диссертационная работа посвящена решению проблемы повышения достоверности результатов диагностирования газотурбинных двигателей сцинтилляционным методом с целью снижения рисков возникновения чрезвычайных ситуаций при эксплуатации воздушных судов.
Цель и задачи исследования
Целью диссертационной работы является разработка новых научно-обоснованных технических и технологических решений, создание диагностической аппаратуры нового поколения на основе спектрального атомно-эмиссионного сцинтилляционного способа оценки параметров металлических частиц, отделяемых от повреждаемых деталей, разработка сцинтилляционного метода диагностики, обеспечивающего повышение уровня безопасности эксплуатации газотурбинных двигателей и снижение рисков возникновения чрезвычайных ситуаций при эксплуатации воздушных судов.
Для достижения поставленной цели решены следующие взаимосвязанные научные и практические задачи:
- разработана математическая модель газодинамического течения газа в цилиндрических разрядных камерах СВЧ плазмотронов и движения одиночных металлических частиц, учитывающая движение, нагрев, испарение этих частиц и различные способы стабилизации разряда;
- исследованы физические процессы в разрядной камере источника возбуждения спектров (СВЧ плазмотрона) сцинтилляционного спектрометра и определены условия оптимального выделения сцинтилляционного сигнала;
- разработаны теоретические и практические положения создания диагностической аппаратуры нового поколения с использованием спектрального атомно-эмиссионного сцинтилляционного способа оценки параметров металлических частиц, отделяемых от повреждаемых деталей в процессе эксплуатации;
-разработан атомно-эмиссионный сцинтилляционный спектрометр нового поколения, обеспечивающий регистрацию, измерение до шести параметров частицы в пробах смазочных масел, способ его градуирования по равновесной и импульсной составляющим сигнала;
- систематизированы и обобщены закономерности изменения технического состояния элементов конструкции ГТД, омываемых смазочным маслом, в зависимости от параметров частиц, отделяемых от повреждаемых деталей;
- установлены новые диагностические признаки, связывающие параметры частиц, отделяемых от повреждаемых деталей и накапливаемые на основном маслофильтре, с техническим состоянием двигателя;
- разработана новая технология диагностирования по результатам сцинтилляционных измерений параметров частиц повреждаемых деталей, выявляемых в пробах масел и смывах с основного маслофильтра.
Экспериментальные исследования проводились:
- на ЛА в условиях эксплуатации;
- на стендах заводов авиационной промышленности;
- в лабораторных условиях на образцах;
- на аварийных ГТД, поступивших на исследование для установления причины отказа.
Научная новизна
Научная новизна диссертационного исследования определяется следующими результатами, полученными лично автором:
1. Разработаны теоретические и практические положения создания диагностической аппаратуры нового поколения, реализующие сцинтилляционный способ регистрации, измерения и анализа параметров частиц повреждаемых деталей, выявляемых в пробах смазочных масел.
2. Создана математическая модель газодинамического течения газа в цилиндрических разрядных камерах СВЧ плазмотронов и движения одиночных металлических частиц, учитывающая движение, нагрев, испарение этих частиц и различные способы стабилизации разряда.
3. Исследованы газодинамические условия в разрядной камере с закрученным потоком газа, при которых:
- введенные в разряд металлические частицы размером от единиц до 100 мкм не выбрасываются на стенку камеры;
- каждой введенной в разряд металлической частице соответствует один сцинтилляционный импульс.
4. Проанализированы закономерности влияния передаточной функции источника возбуждения спектров и распределения частиц по размерам на распределения сигналов.
5. Разработан способ динамической дискриминационной фильтрации сцинтилляционного аналитического сигнала.
6. Разработан атомно-эмиссионный сцинтилляционный спектрометр нового поколения, обеспечивающий регистрацию, измерение до шести параметров частиц в пробах смазочных масел.
7. Получен новый способ одновременного получения информации о примеси, находящейся в виде отдельных частиц и о фоновой составляющей сигнала, несущей информацию о содержании растворенной примеси и (либо) примеси, находящейся в субмикронных частицах.
8. Предложен сцинтилляционный метод диагностики, позволяющий значительно повысить достоверность и качество диагноза за счет увеличения объема диагностической информации и снижения влияния видов повреждения на правильность принятия диагностического решения, повысить уровень безопасности эксплуатации газотурбинных двигателей.
9. Созданы статистические модели исправных двигателей по параметрам частиц повреждаемых деталей с учетом типа и наработки двигателей.
Практическая значимость
Практическая значимость работы заключается в следующем:
1. Разработана новая технология сцинтилляционного диагностирования, обеспечивающая как оценку технического состояния узлов и двигателя в целом, так и локализацию поврежденных узлов. Новая технология диагностирования внедрена в гражданской авиации (бюллетени №№ 1756-БД-Г, 1772-БД-Г, 1786-БД-Г, 1807-БЭ-Г, 1827-БЭ-Г, 1840-БЭ-Г, 94348-БЭ-Г) и обеспечила экономический эффект более 16 млн. рублей.
Технология сцинтилляционного диагностирования является основой для создания новых технологий для диагностики топливной аппаратуры, гидрокомплексов, проточной части двигателей и т.д.
2. Разработаны оригинальные конструкции СВЧ-плазмотронов, обеспечивающие работу с жидкими, либо порошкообразными пробами с эффективностью вхождения подаваемого вещества в струю плазмы близкой к 100%. Созданный СВЧ-плазмотрон циклонного типа с высоким к.п.д. нагрева газа и надежностью пригоден для плазмохимического получения нитридов титана, бора и других веществ.
3. Сконструирована аналитическая аппаратура нового поколения (класса) атомно-эмиссионный сцинтилляционный спектрометр, позволившего повысить достоверность диагноза технического состояния двигателей в условиях эксплуатации благодаря комплексному измерению параметров по каждому из измеренных элементов микропримесей металлов.
Спектрометр может использоваться для трибологических исследований, контроля качества горюче-смазочных материалов, оценки технического состояния узлов, омываемых спецжидкостями и т.д., а также в геологии, геохимии и промышленности для поиска и изучения генетических особенностей месторождений благородных металлов, решения технологических задач.
4. Разработаны методики непрерывного отслеживания фазовых превращений частиц металлов.
5. Накоплен и систематизирован набор эталонов проб масел и смывов с основного маслофильтра с дефектных двигателей, исследованных на заводе. Данный набор является исходной информацией для разработки системы диагностики вновь создаваемых двигателей, методик измерения параметров частиц, отделяемых от повреждаемых деталей и совершенствования технологий диагностирования.
На защиту выносятся:
1. Теоретические и практические принципы создания диагностической аппаратуры нового поколения с использованием спектрального атомно-эмиссионного сцинтилляционного способа оценки параметров металлических частиц, отделяемых от повреждаемых деталей в процессе эксплуатации.
2. Математическая модель и результаты исследований течения плазменного газа, движения в нем одиночных металлических частиц, способы эффективного введения металлических частиц в разряд потоком газа, влияние типа передаточной функции источника света на функцию распределения сцинтилляционных сигналов и способ оценки размеров частиц при сцинтилляционных измерениях.
3. Атомно-эмиссионный сцинтилляционный спектрометр нового поколения, обеспечивающий регистрацию, измерение до шести параметров частиц в пробах смазочных масел, а также комплексное, экспрессное и «прямое» определение содержания элементов, находящихся в пробе в растворенной форме и в виде частиц повреждаемых деталей.
4. Сцинтилляционный метод диагностики, позволяющий значительно повысить достоверность и качество диагноза за счет увеличения объема диагностической информации и снижения влияния видов повреждения на правильность принятия диагностического решения, повысить уровень безопасности эксплуатации газотурбинных двигателей.
5. Закономерности поступления частиц повреждаемых деталей в смазочное масло двигателя при возникновении и развитии повреждения, а также модель развития повреждения по результатам измерения параметров частиц повреждаемых деталей.
6. Результаты микрорентгеноспектральных и сцинтилляционных исследований по структурной однородности сплавов подшипников, используемых в конструкции двигателя, элементному составу частиц, отделяемых от повреждаемых деталей.
7. Критерии технического состояния авиационных двигателей (количественные параметры) по параметрам частиц повреждаемых деталей в пробах с основного маслофильтра и новые диагностические признаки повреждений на ранней стадии их развития.
8. Статистические модели исправных двигателей типа Д-30КП/КУ/КУ-154.
Достоверность и обоснованность результатов
Достоверность и обоснованность результатов исследования обеспечена корректным применением современного математического аппарата, постановкой дополнительных специальных экспериментов, реализующих сцинтилляционный способ регистрации, измерения и анализа параметров частиц и корректной статистической обработкой полученных данных. Правильность измеренных сцинтилляционным способом параметров частиц повреждаемых деталей контролировалась с помощью независимых методов оценки используемого параметра. Достоверность разработанной технологии диагностирования оценивалась путем сравнения результатов сцинтилляционного диагностирования двигателей с результатами их заводской разборки.
Все полученные результаты теоретически и экспериментально обоснованы, а их достоверность подтверждена:
- сходимостью аналитических решений поставленных научных задач с результатами полунатурных и натурных экспериментов;
- внедрением полученных автором решений в конкретные разработки и образцы техники;
- метрологическими возможностями оборудования, его аккредитацией в Госстандарте;
- соблюдением правил составления и тестирования вычислительных программ и алгоритмов.
Апробация работы и публикации
По материалам диссертации опубликована одна монография, одна научно-техническая книга в соавторстве, 44 печатные работы, из них 12 работ в журналах, рекомендованных ВАК («Контроль. Диагностика», «Химия высоких энергий», «Журнал аналитической химии», «Журнал прикладной спектроскопии»), получено 7 авторских свидетельств СССР, 14 патентов РФ и один европатент.
Результаты диссертационной работы реализованы в плановых НИР Иркутского государственного университета, двигателестроительных КБ и заводов РФ (ОАО «Сатурн», «Авиадвигатель»), в ВУЗах РФ и зарубежных стран.
Материалы, изложенные в диссертации, докладывались и обсуждались на Всесоюзных и международных научных семинарах, конференциях:
Вторая Всесоюзная конференция по новым методам спектрального анализа и их применениям (Иркутск, 1981г.); IX Всесоюзная конференция по генераторам низкотемпературной плазмы (Фрунзе, 1983г.); ХIX Всесоюзный съезд по спектроскопии (Томск, 1983г.); III Региональная конференция. Аналитика Сибири 90 (Иркутск, 1990г.); XIV Всесоюзное Черняевское совещание по химии, анализу и технологии платиновых металлов (Новосибирск, 1989г.); II Всесоюзное совещание «Высокочастотный разряд в волновых полях» (Куйбышев, 1989г.); V Конференция «Аналитика Сибири и Дальнего Востока» (Новосибирск, 1996г.); III Сессия научно-технического совещания «Получение, исследование и применение плазмы в СВЧ полях». (Иркутск, 1989г.); Международная научно-практическая конференция «САКС-2001» (Красноярск, 2001г.); XXIV Российская школа по проблемам науки и технологий (Миасс, 2004г.); JOAP international condition monitoring Conference. Mobile (Alabama, 1998г.); Материалы международной научно-практической конференции «Славянтрибо-7а», (Рыбинск Санкт-Петербург, 2006г.); I Всероссийская конференция «Аналитические приборы». (С-Петербург, 2002г.); COMADEM-97. X International Congress and Exhibition on Condition Monitoring and Diagnostic Engineering Management. 1997г.; Первая международная конференция «Энергодиагностика». (Москва, 1995г.); Энергодиагностика и Condition Monitoring (Нижний Новгород, 2001г.); Международная научно-техническая конференция «Проблемы и перспективы развития двигателестроения» (Самара, 2006г.).
Структура и объем работы
Диссертация состоит из введения, шести глав, заключения, списка литературы, изложена на 326 страницах машинописного текста, в том числе: таблиц 62, рисунков 64. Библиография включает 156 наименований работ отечественных и зарубежных авторов.