Введение к работе
Актуальность работы. Становление современной нелинейной динамики было связано как с формированием базовых теоретических концепций и разработкой эталонных математических моделей, так и с большим объемом экспериментальных исследований. Так, результаты анализа математических моделей (систем дифференциальных уравнений Лоренца, Ресслера, а также дискретных отображений) легли в основу теории динамического хаоса и определили направление экспериментальных исследований нелинейных и хаотических феноменов в реальных ситуациях, применительно к объектам различной природы. В свою очередь, наблюдение сложных электрических колебаний, механических движений тел, колебательных химических реакций, гидродинамических течений, эволюционных тенденций в ансамблях живых организмов и других природных явлений, а также процессов в искусственных объектах, стимулировали последовательное развитие нелинейной теории. Среди систем, созданных человеком, основным полигоном для изучения феноменов нелинейной динамики стали радиофизические и электронные системы. Это произошло благодаря разнообразию их конструкций и наблюдаемых явлений, свойств и возможностей управления ими. Важным достоинством является также развитая измерительная база. Изучение сложных автоколебаний радиофизических систем с небольшим числом степеней свободы [Кияшко СВ., Пиковский А.С., Рабинович М.И., Анищенко B.C., Астахов В.В., Дмитриев А.С., Кислов В.Я., Некоркин В.И., Chua L.O.] не только обеспечило развитие фундаментальных представлений о поведении конечномерных нелинейных систем, но и продемонстрировало их прикладные возможности. Электронные СВЧ генераторы на основе лампы с бегущей волной [Кислов В.Я., Залогин Н.Н., Мясин Е.А.] и лампа с обратной волной [Безручко Б.П., Кузнецов СП., Трубецков Д.И.] наряду с гидродинамическими системами сыграли важную роль при изучении нелинейных эффектов и хаоса в распределенных системах.
Материальной основой для данной диссертации стал комплекс лабораторных макетов радиофизических колебательных систем различной степени сложности, сконструированных автором. В ней представлены результаты экспериментального построения и исследования оригинальных физических моделей со свойствами, акцентированными на проявление ряда нелинейных феноменов с целью демонстрации их существования и специфики проявления в реальном мире. Необходимость проведения такой работы диктуется не только целями поиска, но и определяется тем, что аналитически или численно исследуются системы, функционирующие по законам логики, а наблюдение предсказанных эффектов в эксперименте, даже специально поставленном, придает найденному статус «реально существующего». Это в первую очередь касается динамических систем с дискретным временем, широко используемых при исследовании нелинейных явлений. Эксперимент не только позволяет придать результатам компьютерных исследований физическое толкование, но и расширяет имеющиеся представления за счет дополнительных данных и специфических деталей. С другой стороны, если изучение объ-
екта аналитическими или численными методами затруднено, как, например, для рассматриваемых в работе бесконечномерных систем с запаздыванием, физический эксперимент представляет собой наиболее подходящий, а зачастую и единственно возможный, инструмент изучения.
Сказанное обосновывает актуальность тематики диссертационной работы, в которой методами радиофизики рассматриваются фундаментальные проблемы нелинейной динамики (такие как хаос, хаотическая синхронизация, реконструкция нелинейных моделей), а о практической значимости говорит выбор объектов (в частности, системы с запаздыванием) и их приложение к решению востребованных задач как радиофизики, так и смежных областей знаний.
Классы задач, решаемых в диссертации, фактически перечислены в ее названии. Первым (и основным) направлением работы является реализация на радиотехнической базе максимально простых физических моделей, демонстрирующих основные феномены нелинейной динамики и изучение особенностей их проявления в конкретных ситуациях. Это необходимо для создания опорных представлений, позволяющих разобраться в сложнейшей картине хитросплетений нелинейных колебательных режимов объектов различной природы. Примером служат «карты режимов», помогающие ориентироваться в «море» возможных реальных ситуаций. Такие карты необходимы даже в сравнительно простых случаях: например, уже одиночный нелинейный колебательный контур под внешним гармоническим воздействием -наиболее доступный и популярный колебательный радиотехнический объект - демонстрирует столь сложную зависимость движений от нескольких управляющих параметров, что без опорных карт целенаправленный выбор колебательного режима становится проблемой.
Другое направление работы - эмпирическое моделирование в нелинейной динамике - отражено в названии диссертации словом «реконструкция». Речь идет о построении математических моделей по временным рядам экспериментально наблюдаемых величин. Реконструкция в целом - важная междисциплинарная проблема, которая составляет «сердцевину» теории обработки сигналов и имеет большое значение для физики, биологии, геофизики, медицины, техники. Ранее она развивалась в основном в рамках математической статистики и была известна под названием «идентификация систем». На современном этапе подходы к ее решению развиваются в рамках нелинейной динамики [Анищенко B.C., Безручко Б.П., Вадивасова Т.Е., Кузнецов СП., Лоскутов А.Ю., Смирнов Д.А., Фейгин A.M., Abarbanel H.D.I., Parlitz U., VossH.]. Значимость исследований в этом направлении определяется тем, что создание моделей многих практически важных систем, особенно живых, на основе первых принципов затруднительно или пока вообще невозможно. Единственным путем математического описания способа функционирования объекта является конструирование модельной системы уравнений по данным экспериментального наблюдения - реконструкция по временным рядам или другим множествам данных. Повсеместное использование в измерительных приборах аналого-цифровых преобразователей и распространение высоко-
производительной вычислительной техники существенно расширило базу и увеличило возможности такого моделирования. Если раньше речь шла об аппроксимации экспериментальных точек простыми функциями, то теперь - о реконструкции систем нелинейных дифференциальных и разностных уравнений.
Однако, как показывает опыт 90-х годов, использование стандартных подходов зачастую неэффективно. Достижение успеха моделирования по временным рядам становится более реальным лишь при отказе от претензий на разработку единого для всех объектов универсального алгоритма. Необходимо создание набора специальных технологий реконструкции выделенных достаточно узких классов объектов. Такой подход подразумевает использование априорной информации о структуре и свойствах системы (или хотя бы предположение о том, к какому классу относится исследуемая система) и как следствие, создание таких технологий реконструкции, которые позволят использовать в работе не интуитивные догадки, а определенный алгоритм. Эта идеология всесторонне анализируется, а ее плодотворность демонстрируется в диссертации применительно к системам с задержкой, которые широко представлены в природе и технике, а их математические модели успешно применяются во многих разделах физики, биологии и химии. Уравнения Маккея-Гласса, Икеды и генератора с запаздывающей обратной связью стали эталонами систем с запаздыванием [Кислов В.Я., Ланда П.С, Glass L., Hale J.K., Ikeda К., Mackey М.].
Кроме задач создания различных моделей и их исследования, перечисленных в названии работы, большое внимание уделяется обсуждению возможных приложений разработанных методик. Выбор для этого областей радиофизики и физиологии обоснован тем, что:
- современная радиофизика все больше обращается к использованию сложных сигналов (шумоподобных, с широким спектром частот, с изменяющимися параметрами). С практической точки зрения важными являются проблемы построения сверхширокополосных систем связи с хаотической несущей и алгоритмы извлечения замаскированной информации [Дмитриев А.С., Панас А.И., Hasler М.]. Сложное и даже хаотическое поведение типично и для нелинейных колебательных систем различной природы. В этих условиях получили расширение и новое толкование некоторые базовые понятия радиофизики. Так, понятие фазы, очевидное для гармонических сигналов (аргумент гармонической функции), получило расширенное толкование и несколько способов определения (преобразование Гильберта, вейвлет-преобразование, и др.). Весьма востребованы результаты рассмотрения закономерностей изменения фазы сигналов - исследование фазовой динамики, например для диагностики связей колебательных систем по записям их хаотических (или зашумленных периодических) временных реализаций. Так как фаза колебаний наиболее чувствительна к воздействию на автоколебательную систему, эти методы обладают большой чувствительностью («способны на преддиагностику»). Расширенное толкование получили представления о синхронизации - ранее за этим термином стояло затягивание частоты автоге-
нератора под воздействие внешнего гармонического сигнала или выравнивание частот двух взаимодействующих генераторов. Теперь совпадение частот для систем с периодическим поведением рассматривается лишь как частный случай синхронизации. Это понятие расширено на системы со сложным поведением, и применительно к ним используются представления о полной, фазовой, обобщенной, лаг-синхронизации, и др. [Анищенко B.C., Афраймович B.C., Пиковский А.С., Розенблюм М.Г., Рульков Н.С., Шалфеев В.Д., Caroll T.L., Pecora L.M., Abarbanel Н.]. Предлагаются также количественные меры для оценки таких типов поведения. Эти обстоятельства требуют проведения работы по иллюстрации возможностей новых мер при анализе реальных систем, их адаптации к специфике практически важных объектов, внедрению в практику. Синхронизация является важнейшим фундаментальным явлением, и ее изучение дает дополнительную информацию о структуре исследуемой системы и ее месте среди других взаимодействующих систем;
способность к синхронизации внешним сигналом говорит о том, что мы имеем дело с автоколебательной системой и в соответствии с этим можем выбирать вид реконструируемой модели. Если обнаруживается синхронизация между различными подсистемами, то можно предполагать наличие связи между ними, что также дает дополнительную информацию о структуре системы. Еще одна возможность получить дополнительную информацию о той или иной стороне исследуемой системы - поставить специальный эксперимент. В диссертационной работе предложена методика воздействия на систему различными сигналами и анализа отклика на них. Развивается методика определения синхронизации между реальными системами при помощи управления частотой одной из систем. Такая методика позволяет определить наличие связи между отдельными подсистемами (или элементами полной системы) и, следовательно, определить глобальную структуру всей системы в целом;
в последние годы развиваемые в работе методы становятся все более востребованными в медицине и физиологии для решения задач диагностики состояния функциональных систем организма. При этом востребованность представленных в диссертации подходов определяется двумя моментами. Во-первых, рассматриваемые модели отражают механизмы функционирования живых систем, например, наличие запаздывающих связей между элементами типично для организмов, а разработанные методики реконструкции уравнений с запаздывающим аргументом расширяют арсенал средств исследователя-физиолога. Во-вторых, радиофизические макеты систем со сложной динамикой позволяют реализовывать эталонные ситуации с контролируемыми параметрами, физический смысл которых понятен. Так, например, различные способы связи автогенераторов могут быть реализованы через элементы с заданными свойствами, подключаемые в различные точки схемы. Это направление актуально в настоящее время, когда активно внедряются новые меры оценки характера взаимодействия (связанности) элементов организма по записям снимаемых с них сигналов, характера и степени синхронизованности движений в его функциональных системах. Трудности решения этих задач
определяется сложностью, часто хаотичностью, обрабатываемых сигналов, их нестационарностью и зашумленностью.
Таким образом, тематика диссертационной работы лежит в русле фундаментальных проблем современной радиофизики, в таких ее направлениях, как теория колебаний и нелинейная динамика, а также решения актуальных прикладных задач. Развиваемые в ней подходы представляют интерес и для других важных научных направлений, в частности, для климатологии, биологии, физиологии, медицины. Целесообразность выбора места работы определяется тем, что для перехода от фундаментальных представлений в область приложений необходим этап физического и численного эксперимента на моделях и макетах, отражающих специфику процессов в реальных объектах. Дальнейшее исследование возможностей рассматриваемых подходов в приложении к реальным системам позволит, кроме непосредственного позитивного выхода, наметить пути совершенствования моделей, методики и технологий работы со сложными сигналами и нелинейными системами.
Цель работы состоит:
в экспериментальной реализации и исследовании сложной динамики систем с запаздывающей обратной связью и систем с дискретным временем;
в разработке технологии оценки параметров и реконструкции модельных уравнений с запаздыванием по экспериментальным временным рядам, развитии практики реконструкции уравнений систем с задержкой;
в разработке новых методов диагностики синхронизации и количественной меры уровня синхронизации в автоколебательных системах. Научная новизна:
-
впервые проведены экспериментальные исследования генератора с запаздывающей обратной связью в широком диапазоне соотношений времени задержки ко времени инерции фильтра и показан универсальный характер изменения значений параметра неравновесности, при которых происходят последовательные удвоения периода и переход к хаосу;
-
впервые реализованы и исследованы радиотехнические схемы, моделирующие поведение комплексного аналитического отображения и связанных отображений с пороговой связью;
-
впервые реализован и исследован генератор Ван-дер-Поля с модуляцией параметров и запаздывающей обратной связью, в котором наблюдается странный аттрактор, обладающий свойствами гиперболического;
-
впервые предложена методика обработки временного ряда, основанная на подсчете статистики экстремумов и позволяющая определить время задержки системы, описываемой уравнением с задержкой первого порядка;
-
разработан комплекс методик для оценки по временному ряду параметров системы с задержкой;
-
разработана методика определения параметров связи по временному ряду взаимодействующих систем с задержкой;
-
поставлен эксперимент, демонстрирующий синхронизацию основных ритмов сердечно-сосудистой системы с дыханием при изменении частоты дыхания.
Теоретическая и практическая значимость работы Комплекс проведенных экспериментальных исследований радиофизических моделей устанавливает реальное существование ряда нелинейных явлений, обнаруженных на абстрактных моделях. Экспериментальное исследование двух связанных отображений, эквивалентных комплексному квадратичному отображению, демонстрирует наличие феноменов комплексной аналитической динамики в физической реальности. Разработанная неавтономная система с задержкой, обладающая странным аттрактором с гиперболическими свойствами, дает возможность исследовать гиперболические аттракторы в радиофизическом эксперименте. С практической точки зрения, отсутствие в гиперболическом аттракторе устойчивых орбит высоких периодов позволяет считать их перспективными для создания генераторов хаоса. Методы реконструкции и оценки параметров систем с запаздыванием, разрабатываемые в диссертационной работе, применимы во многих областях науки - радиофизике, оптике, физиологии, биофизике и др. В практическом плане идеи реконструкции систем с задержкой демонстрируют недостаточную скрытность систем передачи информации, основанных на синхронном хаотическом отклике. Методы диагностики синхронизации, предложенные в работе, применимы к системам самой различной природы, что обеспечивает их широкую применимость на практике. Результаты исследований использованы в учебном процессе на факультете нелинейных процессов и факультете нано- и биомедицинских технологий Саратовского государственного университета. Совместно с НИИ кардиологии получены свидетельства об официальной регистрации программ, предназначенных для исследования синхронизованно-сти ритмов сердечно-сосудистой системы.
Достоверность научных результатов основана на соответствии выводов экспериментальных исследований и численного анализа моделей, на соответствии с результатами, которые в некоторых случаях могут быть получены и другими методами, на сравнении результатов анализа временных рядов и систем, генерирующих временные ряды, а также на воспроизводимости экспериментов.
Результаты и положения, выносимые на защиту
-
Разработан и экспериментально исследован комплекс радиотехнических моделей с запаздыванием и дискретным временем, демонстрирующих основные феномены нелинейной динамики.
-
Нелинейная система, содержащая генератор Ван-дер-Поля, управляющий параметр которого подвергается медленному изменению с периодом Т, и петлю нелинейной запаздывающей связи, сигнал в которой модулируется с частотой, близкой к частоте автоколебаний генератора Ван-дер-Поля, при значениях времени задержки порядка 3/4Т, может генери-
ровать хаотические колебания, аттрактор которых по структуре близок к гиперболическому.
-
Экспериментальная модель дискретной системы в виде двух связанных особым образом логистических отображений демонстрирует конфигурацию бассейнов притяжения в виде множества Мандельброта, характерного для комплексного квадратичного отображения.
-
В хаотическом временном ряде систем с запаздыванием первого порядка и систем более высокого порядка при малых по сравнению со временем задержки временах инерционности отсутствуют экстремумы, расстояние между которыми равно времени задержки.
-
Итерирование одномерного отображения в обратном времени для оценки параметров методом наименьших квадратов при умеренных уровнях добавленного шума повышает точность определения управляющих параметров по сравнению с итерированием в прямом времени.
-
Разработана методика оценки связи, основанная на реконструкции уравнений связанных систем, преимуществом которой является возможность оценки связи при наличии синхронизации.
-
Разработан комплекс методик, позволяющих оценить время задержки, время инерционности и порядок фильтра в цепи обратной связи генераторов с запаздыванием, демонстрирующих периодическое поведение.
-
Методика, основанная на изменении частоты внешнего воздействия на автоколебательную систему и анализе разности фаз колебаний воздействия и системы позволяет различить ситуации наличия фазовой синхронизации и аддитивного сложения колебаний воздействия и системы.
Работа выполнялась в рамках НИР, проводимых по планам ИРЭ РАН, Отделения информатики, вычислительной техники и автоматизации Российской Академии Наук, при поддержке Российского фонда фундаментальных исследований (гранты 96-02-16755, 99-02-17735, 00-02-17441, 02-02-17578, 03-02-17593, 05-02-16305, 06-02-16619, 07-02-00747), программы РАН «Фундаментальные науки - медицине», а также Американского фонда гражданских исследований и разработок (CRDF, грант REC-006). Результаты работы использовались при чтении курсов и проведении практических занятий со студентами специализации «Теория колебаний и волн» на кафедре электроники, колебаний и волн и на базовой кафедре динамического моделирования и биомедицинской инженерии Саратовского государственного университета.
Апробация работы и публикации.
Основные материалы работы представлялись на зимних школах-семинарах по электронике СВЧ и радиофизике (Саратов, 1993, 1996), на конференциях «Нелинейные колебания механических систем» (Нижний Новгород, 1993, 1996, 1999, 2002, 2005), Международной конференции по нелинейной динамике и хаосу (Саратов, 1996), научной международной конференции «Проблемы фундаментальной физики» (Москва, 1996), 5th International Specialist Workshop on Nonlinear Dynamics of Electronic System (NDES'97, Moskow, 1997), международной школе «Хаотические автоколебания и образование структур» (ХАОС, Саратов, 1998, 2001, 2004, 2007),
International Symposium on Nonlinear Theory and its Applications (NOLTA'98, Crans-Montana, Switzerland, 1998), 6th International Specialist Workshop on Nonlinear Dynamics of Electronic Systems (NDES'98, Budapest, Hungary, 1998), European Interdisciplinary School on Nonlinear Dynamics for System and Signal Analysis EUROATTRACTOR'2000, Warsaw, 2000), 9th Workshop on Nonlinear Dynamics of Electronic Systems (NDES-2001 Delft, The Netherlands, 2001), международной межвузовской конференции «Современные проблемы электроники и радиофизики СВЧ» (Саратов, 2001), 265 WE-Heraeus-Seminar «Synchronization in Physics and Neurosciences», 2001, Bad Honnef, Germany, International conference «Synchronization of chaotic and stochastic oscillations» (Saratov, 2002), «Topical Problems of Nonlinear Wave Physics» (Nizhny Novgorod, Russia, 2003, 2005), International Conference «European Dynamics Days», (Palma de Mallorca, Spain, 2003, 2004), X Всероссийской школе-семинаре «Физика и применение микроволн» (Звенигород, 2005), конференции «Фундаментальные проблемы физики» (Казань, 2005), конференции «Наноэлектроника, нанофотоника, нелинейная физика» (Саратов, 2006, 2007), научной школе «Нелинейные волны» (Нижний Новгород, 2006, 2008), на научных семинарах кафедры электроники, колебаний и волн, базовой кафедры динамического моделирования и биомедицинской инженерии СГУ, лаборатории динамического моделирования и диагностики СФ ИРЭ РАН.
Основное содержание работы изложено в 140 публикациях (46 статей в журналах, 94 тезисов докладов и статей в сборниках).
Личный вклад соискателя. В работах с соавторами соискателю принадлежит ведущая роль в постановке задач, объяснении и интерпретации рассматриваемых процессов и явлений. Соискатель разработал и изготовил экспериментальные радиофизические устройства, использованные в экспериментальных исследованиях, непосредственно участвовал в проведении физиологических экспериментов, составлении программ численной обработки сигналов, осуществлял научное руководство исследованиями. Результаты по исследованию генераторов с запаздыванием получены в соавторстве с Кузнецовым СП.; результаты по реконструкции систем с задержкой - в соавторстве с Безручко Б.П., Прохоровым М.Д., Караваевым А.С.; результаты по разработке методики исследования синхронизации - совместно с Прохоровым М.Д., Короновским А.А., Храмовым А.Е.
Структура и объем работы.