Введение к работе
Актуальность темы
С 1990х гг. все более широкое распространение получают лазерные системы, генерирующие высокоинтенсивные сверхкороткие импульсы фемто-и субфемтосекундного диапазона. Распространение фемтосекундного излучения в оптических средах без разрушения вещества оказалось возможным при гораздо больших интенсивностях, чем для более длинных импульсов. Это привело к возможности свободно наблюдать нелинейные явления, которые в поле импульсов больших длительностей наблюдаются редко. Например, явление сверхуширения временного спектра излучения, когда ширина спектра становится соизмеримой с его центральной частотой, в поле фемтосекундных импульсов наблюдается практически во всех прозрачных объемных и волноведущих средах. Явление сверхуширения временного спектра называют также генерацией спектрального суперконтинуума (ССК).
Применение импульсов с континуумным спектром чрезвычайно перспективно для многих областей науки и техники. Сфазировав фемтосекундный ССК, можно получить импульсы, состоящие всего из двух-трех колебаний светового поля. Длительность таких предельно коротких импульсов (ПКИ) фактически определяет новый масштаб временных измерений - порядка 5 фемтосекунд в видимом и ближнем ИК диапазоне. Другой новый метрологический масштаб - спектральная ширина воспроизводимого когерентного излучения в несколько сотен терагерц - уже используется для измерения абсолютных значений частот с точностями, на много порядков превосходящими достижимые ранее. Особо стоит отметить перспективы использования фемтосекундного суперконтинуума в современных информационных технологиях для сверхплотной передачи информации и в сверхширокополосной спектроскопии.
Как фундаментальное явление фемтосекундной оптики, генерация ССК представляет несомненный теоретический интерес. Однако традиционные в оптике сверхкоротких импульсов теоретические модели, базирующиеся на приближении медленно меняющейся амплитуды, перестают быть плодотворными при описании явлений сверхуширения спектра, т.к., по сути, содержат в себе предположение квазимонохроматичности излучения. Поэтому разработка новых адекватных моделей генерации фемтосекундного ССК в прозрачных средах, а также выявление характерных черт этого процесса в зависимости от параметров распространяющихся импульсов и характеристик среды представляются весьма актуальными задачами.
Цель работы
Развитие теории временной и спектральной эволюции интенсивных фемтосекундных лазерных импульсов со сверхширокими спектрами в прозрачных оптических волноводах и объемных средах с нерезонансными дисперсией и кубической нелинейностью.
Задачи исследования
-
Вывод и решение уравнений динамики спектра интенсивных фемтосекундных лазерных импульсов в оптических волноводах с нерезонансными дисперсией и кубической нелинейностью. Обобщение уравнений на случай параксиальной пространственно-временной эволюции в объемных средах.
-
Вывод соотношений между входными параметрами светового импульса с широким спектром и характеристиками волновода, определяющих начальный сценарий динамики среднеквадратических длительности и ширины спектра излучения.
-
Выявление основных сценариев сверхуширения спектра импульсов из малого числа колебаний светового поля в волноводах, используя выведенные уравнения и соотношения.
-
Анализ влияния электронно-колебательной нелинейности на сверхуширение спектра предельно коротких импульсов в кварцевом волокне и объемном кварцевом стекле.
-
Исследование влияния электронной и электронно-колебательной нелинейностей на сверхуширение спектра фемтосекундных импульсов в капиллярах, заполненных комбинационно активными газами.
-
Описание самовоздействия и взаимодействия импульсов с широкими спектрами и различными центральными частотами одним уравнением для комплексной огибающей.
-
Изучение особенностей комплексной огибающей излучения со сверхшироким спектром и произвольным временным профилем.
-
Исследование эволюции временных и спектральных характеристик ПКИ в процессе укручения заднего фронта его огибающей при параксиальной самофокусировке в прозрачной объемной среде с нормальной и аномальной групповой дисперсией.
Основные новые научные положения, выносимые на защиту
-
Выведено уравнение однонаправленной (безотражательной) эволюции сверхширокого частотного спектра линейно поляризованного излучения в оптическом волноводе с дисперсией произвольного вида и кубической нелинейностью электронной и электронно-колебательной природы. Уравнение обобщено на случай параксиальной самофокусировки излучения в прозрачной объемной среде.
-
Выведена параболическая зависимость квадрата среднеквадратической длительности импульса из малого числа колебаний поля от пройденного расстояния в волноводе с дисперсией и нерезонансной электронной нелинейностью. Различные соотношения коэффициентов параболы определяют один из трех возможных режимов начальной эволюции временного профиля импульса - расплывание, неизменение во времени или сжатие (самокомпрессию). Показана возможность одновременной компрессии
временного и спектрального профиля импульса из малого числа колебаний с отрицательной частотной модуляцией.
-
Выведена зависимость среднеквадратическои ширины спектра импульса из малого числа колебаний поля от пройденного расстояния в волноводе с произвольной дисперсией и нерезонансной электронной нелинейностью на начальном этапе распространения. Показано, что ширина спектра увеличивается при учете его обогащения за счет генерации кратных гармоник. В области аномальной групповой дисперсии возможно самосжатие (увеличение амплитуды и уменьшение ширины) главного спектрального максимума вокруг центральной частоты.
-
Предсказано, что генерация фемтосекундного спектрального суперконтинуума в оптических волноводах, сопровождающая формирование солитоноподобных образований из малого числа колебаний светового поля, более эффективна, чем генерация суперконтинуума, сопровождающая временное уширение фемтосекундного импульса. Для импульсов с разной центральной частотой, но совпадающими числом колебаний поля, интенсивностью и отношением нелинейной и дисперсионной длин, показано, что различие нормированной среднеквадратическои ширины спектра может составлять 5 и более раз.
-
Электронно-колебательная нелинейность кварцевого стекла в области нормальной групповой дисперсии приводит к малому (на несколько процентов) сдвигу центральной частоты сверхуширяющегося спектра предельно короткого импульса в стоксову область. В случае аномальной групповой дисперсии она проявляется существеннее. Так в оптическом волноводе из-за нее появляются модуляции в спектре и растет длительность солитоноподобных образований из нескольких колебаний поля, а в объемной среде - увеличиваются интенсивность и длительность высокочастотного хвоста импульса.
-
Существенные электронно-колебательная и электронная нелинейности сжатого дейтерия в полом капилляре определяют структуру спектрального суперконтинуума, формирующегося при распространении импульсов длительностью 120-150 фс. На начальном этапе доминирует уширение спектра накачки за счет фазовой самомодуляции. Потом появляются неоднородно уширенные стоксовая и антистоксовая комбинационные компоненты. Далее имеет место каскадная генерация преимущественно стоксовых частот. К выходу из волновода все компоненты перекрываются и формируется сплошной сверхширокий спектр с множеством квазидискретных максимумов.
-
Взаимодействие, как и самовоздействие, импульсов с континуумными спектрами и различными центральными частотами в нелинейной среде может быть описано одним уравнением для комплексной огибающей. Для этого огибающая суммарного поля произвольного вида должна определяться на основе формализма аналитического сигнала, а дисперсионная зависимость
константы распространения от частоты должна вводиться в уравнение в Фурье-пространстве непосредственно, без применения аппроксимации несколькими первыми членами ряда Тейлора. Такая математическая модель для взаимодействия импульсов с континуумными спектрами корректнее, чем система уравнений для огибающих отдельных импульсов.
-
В случае предельно коротких импульсов электронная кубическая нелинейность приводит к появлению в профиле огибающей осцилляции с периодом порядка половины периода колебаний на центральной частоте спектра. Глубина осцилляции может превышать 10% от амплитуды излучения. Эффект связан с генерацией утроенных частот, которая традиционно игнорируется в уравнениях для комплексной огибающей. Показано, как можно обобщить уравнения для огибающих, чтобы корректно учесть этот эффект.
-
Ударное увеличение крутизны заднего фронта огибающей, связанное с генерацией мощного "синего" крыла спектра с шириной вплоть до удвоенного значения лазерной частоты, является фактором, ограничивающим рост поля при параксиальной самофокусировке осесимметричных импульсов из малого числа колебаний в прозрачных объемных средах. Уже при мощностях, в 1.1-2.5 раза превышающих критическую мощность самофокусировки, длительность заднего фронта огибающей может становиться заметно меньшей одного периода колебаний на лазерной частоте. Далее формирующие фронт высокочастотные компоненты отстают от основного импульса из-за различия групповых скоростей, унося энергию и растягивая структуру во времени.
Научная новизна
Все результаты, включенные в положения, выносимые на защиту, являются новыми. Специально отметим следующее:
-
Уравнения из положений 1-3 выведены впервые. Процедура вывода уравнения однонаправленного распространения из полного волнового уравнения оригинальна. Ее достоинством является наглядность всех математических преобразований. Процедура может быть перенесена на другие модели нелинейности среды.
-
Первые результаты соискателя по моделированию спектрально-временной эволюции ПКИ в одномодовых оптических волноводах с произвольным законом дисперсии относятся к 1997-2001 гг. и являются приоритетными. Соискатель - соавтор приоритетных научных работ по параксиальной самофокусировке ПКИ в прозрачных объемных средах, начиная с 1999 г.
-
Впервые продемонстрирована возможность описания взаимодействия импульсов с континуумными спектрами и сильно различающимися центральными частотами одним уравнением для комплексной огибающей.
-
Изменения огибающей оптического излучения со сверхшироким спектром в прозрачной среде, имеющие характерный временной масштаб заметно меньше одного периода колебаний на лазерной частоте, обсуждаются впервые.
Практическая значимость работы
-
Разработанные численные методы и комплекс программ являются основой для инженерных расчетов генерации фемтосекундного спектрального суперконтинуума в волноводах и объемных средах. Программные средства успешно используются для анализа экспериментов по дифракции терагерцовых импульсов из малого числа колебаний поля.
-
Оценки по выведенным уравнениям изменения среднеквадратической длительности и ширины спектра световых импульсов позволяют экспрессно, без решения нелинейных интегро-дифференциальных уравнений, определять параметры импульсов и волноводов, обеспечивающие условия для решения прикладных задач.
-
Эксперименты по генерации квазидискретных сверхшироких спектров в полых волноводах, заполненных водородом или дейтерием, получили теоретическую трактовку.
-
Полученные результаты открывают путь к значительно более широкому использованию существующих программных реализаций, основанных на формализме огибающей, путем их несложной модификации.
-
Рассчитанные константы дисперсии кварцевого стекла позволяют аппроксимировать частотную зависимость показателя преломления с
точностью до 10" в диапазоне длин волн 460-2000 нм.
Достоверность результатов
Достоверность развиваемой в работе теории подтверждается соответствием делаемых выводов и заключений результатам физических экспериментов по распространению интенсивных фемтосекундных импульсов. Выведенные уравнения и соотношения включают известные ранее теоретические результаты для квазимонохроматических импульсов как частные случаи.
Апробация работы
По результатам работы представлено 67 докладов на научных конференциях и семинарах различного уровня, в том числе на Международном симпозиуме по фотонному эхо и когерентной спектроскопии PECS (Йошкар-Ола, 1997; Калининград, 2005); Международной конференции по лазерной физике и спектроскопии (Беларусь, Гродно, 1997, 1999); Международной конференции по оптике лазеров LO (Санкт-Петербург, 1998, 2000, 2002, 2006); Международной конференции по когерентной и нелинейной оптике ICONO (Москва, 1998; Минск, Беларусь, 2001, 2007; Санкт-Петербург, 2005); Международной конференции по сверхбыстрым явлениям Ultrafast Phenomena (Мюнхен, ФРГ, 1998); Международном конгрессе по современной оптике (Будапешт, Венгрия, 1998); Международном конгрессе по высокоскоростной фотографии и фотонике (Москва, 1998); Международной конференция по лазерам LASE (Квебек, Канада, 1999); Международной конференции по мощным лазерам и их приложениям Photonics WEST (Сан-Хосе, Калифорния, США, 1999, 2002); Международной конференции по квантовой электронике и
лазерной технике (Балтимор, Мэриленд, США, 1999); Международной конференции Photonics Prague (Прага, Чешская Республика, 1999, 2002); Международной Конференции "Нелинейные науки на рубеже тысячелетий" (Санкт-Петербург, 1999); Российской научно-практической конференции Оптика - ФЦП "Интеграция" (Санкт-Петербург, 1999); Международной конференции молодых ученых и специалистов "Оптика" (Санкт-Петербург, 1999, 2001, 2009); Международных чтениях по квантовой оптике (Казань, 1999); Международной конференции по лазерной оптике для молодых ученых (Санкт-Петербург, 2000, 2003); Международной конференции по взаимодействию лазерного излучения с веществом (Санкт-Петербург, 2000, 2003); Европейской Международной конференции по лазерной и электрооптике (Ницца, Франция, 2000; Мюнхен, ФРГ, 2001); Международной конференции "Фундаментальные проблемы оптики" (Санкт-Петербург, 2000, 2002, 2004, 2006, 2008, 2010); Ежегодной конференции Оптического Общества Америки (Лонг Бич, Калифорния, США, 2001); Международной конференции "День дифракции" (Санкт-Петербург, 2002, 2007, 2010); научной и учебно-методической конференции СПбГУ ИТМО (Санкт-Петербург, 2003, 2004, 2005, 2006, 2007, 2009, 2010); научном семинаре в Международном лазерном центре МГУ (Москва, 2003, 2010); Международной конференции по оптике "ROMOPTO" (Константа, Румыния, 2003); летней научной школе лауреатов фонда "Династия" (Московская обл., пос. Московский, 2005); Международной конференции по оптоинформатике и фотонике, проводимой Международным комитетом по оптике ICO (Санкт-Петербург, 2006, 2008); Всероссийской межвузовской конференции молодых ученых (Санкт-Петербург, 2010).
Публикации
По теме диссертации опубликовано 60 научных и учебно-методических работ из них 21 в журналах списка ВАК, 8 в журнале Proceedings of SPIE, входящем в системы цитирования SCOPUS и Chemical Abstracts, 19 в других рецензируемых научных изданиях и сборниках, 12 в сборниках трудов конференций.
Личный вклад
Диссертация написана Ю.А. Шполянским лично. Все приведенные в диссертации результаты получены автором лично или при его определяющем участии. Программы расчета динамики фемтосекундных импульсов в прозрачных средах и волноводах реализованы совместно с соавторами по публикациям к.ф.-м.н. А.Н. Берковским и к.ф.-м.н. М.А. Бахтиным. Программы основаны на численных схемах, разработанных Ю.А. Шполянским.
Структура и объем диссертации
Диссертация состоит из введения, 6 глав, заключения, 4 приложений и списка литературы из 248 наименований. Она изложена на 246 страницах, включая 55 рисунков и 1 таблицу.