Электронная библиотека диссертаций и авторефератов России
dslib.net
Библиотека диссертаций
Навигация
Каталог диссертаций России
Англоязычные диссертации
Диссертации бесплатно
Предстоящие защиты
Рецензии на автореферат
Отчисления авторам
Мой кабинет
Заказы: забрать, оплатить
Мой личный счет
Мой профиль
Мой авторский профиль
Подписки на рассылки



расширенный поиск

Модели релаксационных параметров спектральных линий двух- и трехатомных молекул при сильном колебательном возбуждении Стройнова Валентина Николаевна

Данная диссертационная работа должна поступить в библиотеки в ближайшее время
Уведомить о поступлении

Диссертация, - 480 руб., доставка 1-3 часа, с 10-19 (Московское время), кроме воскресенья

Автореферат - бесплатно, доставка 10 минут, круглосуточно, без выходных и праздников

Стройнова Валентина Николаевна. Модели релаксационных параметров спектральных линий двух- и трехатомных молекул при сильном колебательном возбуждении : автореферат дис. ... доктора физико-математических наук : 01.04.05 / Стройнова Валентина Николаевна; [Место защиты: Ин-т оптики атмосферы им. В.Е. Зуева СО РАН].- Томск, 2010.- 35 с.: ил. РГБ ОД, 9 10-6/2561

Введение к работе

Спектроскопическая информация о высоких колебательных состояниях молекул и параметрах контура линий, образованных переходами на такие состояния, необходима для решения многих задач физики межмолекулярных взаимодействий, лазерной физики, оптики атмосферы Земли и других планет, физики межзвездной среды.

Актуальность работы. В исследованиях высоковозбужденных молекулярных газовых сред спектры излучения, поглощения или рассеяния содержат важнейшую информацию о состоянии среды. Например, в спектре излучения СО лазера наблюдаются линии, соответствующие переходам между состояниями в которых возбуждено 20 – 40 колебательных квантов. Измерения и теоретический анализ спектров, в том числе и коэффициентов уширения и сдвига позволяют определить необходимые характеристики переходов, рабочей среды и провести моделирование процессов возбуждения и излучения лазера. Высоковозбужденные состояния также участвуют в формировании спектров излучения других лазеров, например, HF – лазера.

Для ряда приложений важнейшим является вопрос о колебательной зависимости коэффициентов уширения и сдвига колебательно – вращательных (КВ) линий молекул атмосферных газов. Например, спектроскопические данные Н2О в широком спектральном диапазоне, от микроволновой до ближней УФ области, занесены в банки данных HITRAN и GEISA поскольку водяной пар является важнейшим парниковым газом. Экспериментальные спектры Н2О в указанном диапазоне содержит переходы, соответствующие возбуждению до 10 квантов изгибного колебания n2 и до 8 квантов валентных колебаний n1 и n3. Столь сильное возбуждение, очевидно, может привести к изменению полуширин линий и должно учитываться в расчетах функции пропускания атмосферы.

Таким образом, в ряде областей спектроскопии возникает необходимость исследования КВ переходов на высоковозбужденные состояний двух- и трехатомных молекул, в том числе и коэффициентов уширения и сдвига линий. В указанных здесь примерах энергия возбуждения составляет от 1/3 до 1/2 энергии диссоциации молекулы.

В практических применениях теории ударного уширения неявно используется ряд приближений, в том числе приближение малых колебаний и жесткого ротатора. Эти приближения вполне оправданы для нижних колебательных состояний квазижестких молекул, и различные внутримолекулярные характеристики (функция потенциальной энергии, дипольный, квадрупольный моменты, поляризуемость и т.д.) можно представить в виде, содержащим несколько первых членов разложений в ряды по степеням колебательных координат. Для нижних состояний внутримолекулярные взаимодействия, как правило, дают малые поправки к уровням энергии и волновым функциям молекулы, а потенциал межмолекулярного взаимодействия слабо зависит от колебательных квантовых чисел.

Однако для рассматриваемых в диссертации высоковозбужденных КВ состояний, энергия которых сравнима с диссоциационным пределом функции потенциальной энергии, колебания атомов уже не могут считаться малыми. Внутримолекулярные эффекты: центробежное искажение, ангармонизм колебаний, кориолисово взаимодействие, случайные резонансы могут оказывать сильное влияние на энергетический спектр и волновые функции, средние значения мультипольных моментов и, следовательно, на уширение и сдвиг линий. Влияние внутримолекулярной динамики на релаксационные параметры линий высоких обертонных полос ранее не исследовались.

Решаемая проблема может быть сформулирована как «спектроскопия межмолекулярных взаимодействий при сильном колебательном возбуждении». Указанная проблема имеет несколько аспектов.

Во–первых, поглощение вблизи центра линии определяется элементами релаксационной матрицы, причем соотношение между ее диагональными и недиагональными элементами определяет форму контура (эффект интерференции линий). Колебательное возбуждение может изменить это соотношение и привести к изменению формы контура: линии, соответствующие одним и тем же вращательным переходам в основных и высоких обертонных полосах, могут иметь различную форму

Во–вторых, колебательное возбуждение приводит к изменению межмолекулярного потенциала, что может повлиять на уширение и сдвиг линий посредством различных факторов. Необходимо отметить, что колебательное возбуждение изменяет анизотропную часть потенциала (дипольный, квадрупольный и т.д. моменты) и приводит к перераспределению вкладов различных мультипольных взаимодействий в уширение и сдвиг центров линий. При колебательном возбуждении изменяется также изотропная часть межмолекулярного потенциала (средние значения поляризуемости, дипольного момента), что приводит к изменению значений релаксационных параметров спектральных линий.

Втретьих, возбуждение колебаний в молекуле может вызывать кардинальную перестройку вращательного энергетического спектра. В молекулах, содержащих только «тяжелые» атомы (UF6, SF6, SO2 и др.) возбуждение уже 2-3-х колебательных квантов приводит к возникновению энергетического квазиконтинуума – близко расположенных КВ уровней энергии. Это обстоятельство приводит к особенностям в уширении и сдвиге линий, обусловленных ведущей ролью неадиабатического перемешивания КВ состояний столкновениями. С другой стороны, в молекулах, содержащих атомы водорода, возбуждение 3-4 квантов валентных колебаний приводит к «локализации», вращательный энергетический спектр меняется и наблюдается кластеризация вращательных уровней. Вследствие кластеризации может проявиться эффект интерференции линий. Таким образом, общая картина оказывается весьма сложной и многофакторной, что требует детальных и обширных расчетов.

Для молекулы Н2О до начала данной работы было необходимо объяснить сильную зависимость коэффициентов сдвига линий от колебательных квантовых чисел, наблюдаемую в экспериментах. Измерения, проведенные еще в 80-х годах, показали, что сдвиг линии, в отличие от ее полуширины, возрастает в несколько раз при возбуждении 34 квантов валентных колебаний. Объяснение было предложено в наших работах на основе модели колебательно зависимого изотропного потенциала. Для коэффициентов уширения Н2О и других газов, внесенных в банки данных HITRAN и GEISA (в версиях 80-х и 90-х годов), коэффициенты уширения спектральных линий предполагались одинаковыми для всех полос, включая и высокие обертонные и комбинационные полосы. Также одинаковой предполагалась их температурная зависимость. Очевидно, что эти предположения должны быть проверены в детальных расчетах, наиболее полно учитывающих эффекты колебательного возбуждения.

В связи с указанными выше обстоятельствами целью работы является::

1. Исследование влияния внутримолекулярной динамики на релаксационные параметры контура спектральных линий, обусловленных переходами между высоковозбужденными колебательными состояниями двух- и трехатомных молекул. Выявление механизмов влияния внутримолекулярной динамики, сильного колебательного возбуждения на форму контура, величину коэффициентов уширения и сдвига спектральных линий.

2. Объяснение имеющихся экспериментальных данных по сдвигу центров линий КВ полос Н2О в ближней ИК и видимой области.

Для достижения цели необходимо решить задачи по построению теоретических моделей, которые позволяли бы исследовать зависимости коэффициентов уширения и сдвига спектральных линий двух- и трехатомных молекул от вращательных, колебательных квантовых чисел, температуры, типа буферного газа при сильном колебательном возбуждении.

Объектом исследования являются релаксационные параметры линий, принадлежащих высоким КВ полосам молекул Н2О, HF, СО в условиях самоуширения и уширения посторонними газами. Необходимо отметить, что в диссертации рассматриваются переходы на высокие КВ состояния, лежащие в пределах основного синглетного электронного состояния двух- и трехатомных молекул; а также сильные столкновения оптически активной молекулы с двух-, трехатомными молекулами и атомами инертных газов.

Для диссертационных исследований применялись следующие методы:

1. Методы квантовой механики (теория возмущений и вариационный метод).

2. Методы асимптотической теории возмущений (суммирование рядов методом Паде, преобразование Паде-Бореля).

3 Методы теории уширения в ударном приближении: варианты Anderson-Tsao-Curnutte (ATC), Korf-Leavitt (KL), Ma-Tipping-Boulet (MTB.

В диссертации предложены модели, которые позволяют объяснить колебательные, вращательные и температурные зависимости полуширины и сдвига центров линий двух- и трехатомных молекул при сильном колебательном возбуждении.

1. KL/MTB-UPP (KL/MTB-Unzold Polarization Potential). Включает известные методы Корфа-Левита или Ма-Типинга-Буле и поляризационный потенциал в приближении Унзольда, который определяется колебательно зависимыми компонентами тензора поляризуемости. Анизотропная часть межмолекулярного взаимодействия представляется в виде мультипольного разложения. Параметры разложения (дипольный, квадрупольный и т.д. моменты) также зависят от межъядерного расстояния. Модель полностью учитывает эффекты внутримолекулярной динамики и не содержит подгоночных параметров. Это позволяет вычислять полуширины и сдвиги центров линий высоких обертонных полос при любых уширяющих газах.

2. ATC/MTB-VDIP (ATC/MTB-Vibrational Dependent Isotropic Potential). Включает методы Андерсона-Тсао-Карната или Ма-Типинга-Буле и колебательно зависимый изотропный потенциал, представляемый в виде разложения в ряд по обратным степеням межмолекулярного расстояния. Модель является полуэмпирической, для расчетов необходимо восстановить из измеренных значений сдвигов центров линий одну или несколько величин, учитывающих колебательную зависимость изотропной части межмолекулярного потенциала. Модель учитывает колебательную зависимость мультипольных моментов, поляризуемости оптически активной молекулы и влияние внутримолекулярной динамики на вероятности и частоты переходов, вызванных столкновениями. Позволяет объяснить вращательную и температурную зависимости полуширин и сдвигов центров линий одной колебательной полосы для конкретного буферного газа.

3. ATC/KL-UQP (ATC/KL-Unzold Quasipolarization Potential). Полуэмпирическая модель с поляризационным потенциалом в приближении Унзольда, в котором средняя поляризуемость (определяемая далее как квазиполяризуемость) является подгоночным параметром. Анизотропная часть представляется обычным образом в виде мультипольного разложения. Квазиполяризуемость определяется по измеренному сдвигу центра одной линии и является «универсальным» параметром, переносимым от одного буферного газа к другому.

Предсказательная способность защищаемых моделей обеспечена:

1.Использованием хорошо разработанных методов квантовой механики и ударной теории уширения, проверенных неоднократно другими авторами для низких колебательных состояний

2. Согласием значений уровней энергии и молекулярных параметров для низких колебательных состояний с вычисленными в данной работе

3.Использованием функций потенциальной энергии, дипольного, квадрупольного моментов и поляризуемости для двухатомных молекул, имеющих правильное асимптотическое поведение при больших и малых межъядерных расстояниях

Достоверность защищаемых моделей и полученных на их основе результатов подтверждается:

1. Использованием в расчетах волновых функций и уровней энергии, учитывающих все необходимые факторы внутримолекулярной динамики; физически обоснованным использованием подгоночных параметров межмолекулярного потенциала.

2.Согласием расчетных значений коэффициентов уширения и сдвига центров линий Н2О, HF и CO с имеющимися экспериментальными данными для различных буферных газов.

3.Согласием результатов расчета полуширин и сдвигов центров линий Н2О, HF, CO с расчетными данными других авторов.

Научная новизна результатов диссертации обусловлена:

1. Впервые исследована зависимость коэффициентов уширения и сдвига центров линий двухатомных молекул HF и CO от колебательных, вращательных квантовых чисел для переходов на состояния с большой амплитудой колебаний и энергией, сравнимой с энергией диссоциации молекулы (в рамках модели KL/MTB-UPP)

2. Впервые обнаружен и объяснен немонотонный характер колебательных зависимостей релаксационных параметров спектральных линий HF и CO (в рамках модели KL/MTB-UPP)

3. Впервые исследовано влияние внутримолекулярной динамики на уширение и сдвиг спектральных линий, образованных переходами на высоковозбужденные колебательные состояния двух- и трехатомных молекул (в рамках моделей KL/MTB-UPP, ATC/MTB-VDIP, ATC/KL-UQP)

4. Впервые обнаружены и объяснены зависимости коэффициентов сдвига центров линий Н2О от колебательных, вращательных квантовых чисел, от типа буферного газа (в рамках модели ATC/KL-UQP)

5. Впервые получено хорошее согласие между экспериментальными и теоретическими значениями коэффициентов сдвига линий Н2О в широком спектральном интервале от МВ до видимого диапазона, от 0 до 17000 см-1 (в рамках модели ATC/KL-UQP)

6. Впервые определена зависимость коэффициентов сдвига линий Н2О от температуры, впервые обнаружено качественное различие температурной зависимости сдвигов центров линий в основных и обертонных полосах (в рамках модели ATC/KL-UQP)

7. Впервые решена обратная задача по определению средней поляризуемости из измерений коэффициентов сдвига центров линий Н2О (в рамках модели ATC/KL-UQP)

8. Впервые обнаружен и объяснен эффект центробежного сужения линий в полосах типа nn2 молекулы Н2О (в рамках модели ATC/KL-UQP)

9. Впервые поставлена обратная задача по определению колебательно зависимых параметров межмолекулярного потенциала из измерений коэффициентов сдвига центров линий Н2О, HF и CO (в рамках модели ATC/MTB-VDIP)

Практическая значимость полученных результатов и предложенных моделей заключается в возможности их использования для создания банков данных спектроскопической информации и программных комплексов..

Личный вклад автора заключается в определении целей и постановке задач, выводе большинства новых формул, создании вычислительных программ, анализе результатов исследований. Часть результатов получена совместно с А.Д.Быковым и Д.С.Емельяновым, некоторые результаты по сдвигу центров линий Н2О опубликованы в соавторстве с сотрудниками ИОА СО РАН, проводившими измерения коэффициентов сдвига спектральных линий. Имеется 11 публикаций без соавторов, из них 4 опубликованы в журналах, рекомендованных ВАК.

На защиту выносятся следующие положения:

1. Коэффициенты сдвига центров спектральных линий двух- и трехатомных молекул сильно зависят от внутримолекулярной динамики: изменение вращательного энергетического спектра, центробежное искажение, ангармонизм колебаний приводят к изменению величины коэффициентов сдвига в несколько раз и даже, изменяют его знак

2.Увеличение амплитуды колебаний атомов в высокоэнергетических состояниях двухатомных молекул, сравнимое с равновесным значением длины связи, приводит к сильному изменению полуширин и сдвигов центров линий. Вызванное колебательным возбуждением изменение средних значений дипольного, квадрупольного моментов и поляризуемости определяет немонотонный характер зависимости полуширины и сдвига центров линий от колебательного квантового числа.

3. При сильном колебательном возбуждении двухатомных молекул возрастает адиабатический вклад в сдвиг центров линий до 80%, в полуширину до 20% от их величины в низких колебательных состояниях

4.Аномальное центробежное искажение в Н2О изменяет вращательный энергетический спектр и приводит к сужению линий в полосах типа n2 (n=1,…,7) по сравнению с линиями вращательной полосы. При дальнейшем возбуждении изгибного колебания, вследствие изменения колебательной динамики, усиления полярности молекулы вследствие электронно – колебательного взаимодействия, коэффициенты уширения линий полос n2 (n=8,…,12) возрастают.

5.Знак и величина сдвига центров линий Н2О давлением неполярных молекул, атомов и собственным давлением, в МВ и дальнем ИК диапазоне определяется неадиабатическим эффектом то есть конкуренцией частот вращательных переходов в нижнем и верхнем колебательных состояниях.

6. Колебательная зависимость поляризуемости молекулы Н2О приводит к сильному возрастанию вклада в сдвиг от поляризационных взаимодействий. Увеличение вклада адиабатического сдвига уровней при колебательном возбуждении поглощающей молекулы полностью объясняет экспериментально наблюдаемые величину и отрицательный знак сдвига центров линий Н2О давлением неполярных молекул и атомов в ближнем ИК и видимом диапазоне

7. Конкуренция адиабатического и неадиабатического вкладов в сдвиг линий приводит к немонотонной температурной зависимости коэффициентов сдвига некоторых спектральных линий Н2О давлением воздуха в основных и вращательной полосах. Преобладающий вклад адиабатического эффекта приводит к монотонно убывающей температурной зависимости коэффициентов сдвига линий высоких обертонных и комбинационных полос.

Публикации и апробация работы.

Результаты диссертации изложены в 46 оригинальных статьях (из них 24 в журналах, рекомендованных ВАК) и 36 тезисах докладов на Международных и Всероссийских конференциях. Результаты работы были представлены на VIII Всесоюзном симпозиуме по молекулярной спектроскопии высокого разрешения (Томск, 1987); X, XI, XIV Коллоквиумах по молекулярной спектроскопии высокого разрешения (Дижон, 1987; Гессен, 1989; Дижон, 1995); XX, XXIII, XXIV Всесоюзном съезде по спектрооскопии (Киев, 1988; Звенигород, 2005; Москва, 2010); XV Международной конференции по лазерному зондированию (Томск, 1990); XI-XV Международных симпозиумах-школах по молекулярной спектроскопии (Омск, 1991; Санкт-Петербург, 1996; Томск, 1999; Красноярск, 2003; Нижний Новгород, 2006); VII-XI Международных симпозиумах по оптике атмосферы и океана (Омск, 1991; Томск, 2000; Иркутск, 2001; Томск, 2002; Томск, 2004; Томск, 2007,2009); на рабочей группе по прикладной атмосферной спектроскопии (Москва, 1990); на 49 Международном Симпозиуме по молекулярной спектроскопии (США, 1994); на XIII Международной конференции по спектроскопии высокого разрешения (Польша, 1994); на VII-VIII Международной конференции по импульсным лазерам (Томск, 2005; Томск, 2007, 2009); на I Международном симпозиуме по оптике, информатике и кибернетике (США, 2006).

Ссылки на цитируемую литературу приведены в квадратных скобках, на оригинальные статьи – в косых скобках.

Структура работы. Диссертация состоит из введения, 7 глав, заключения (212 страниц текста, 28 рисунков, 32 таблиц). Список литературы содержит 199 наименования.

Похожие диссертации на Модели релаксационных параметров спектральных линий двух- и трехатомных молекул при сильном колебательном возбуждении