Электронная библиотека диссертаций и авторефератов России
dslib.net
Библиотека диссертаций
Навигация
Каталог диссертаций России
Англоязычные диссертации
Диссертации бесплатно
Предстоящие защиты
Рецензии на автореферат
Отчисления авторам
Мой кабинет
Заказы: забрать, оплатить
Мой личный счет
Мой профиль
Мой авторский профиль
Подписки на рассылки



расширенный поиск

Компьютерное моделирование системы наведения взаимодействующих терминалов лазерной космической связи Артёмов Александр Григорьевич

Компьютерное моделирование системы наведения взаимодействующих терминалов лазерной космической связи
<
Компьютерное моделирование системы наведения взаимодействующих терминалов лазерной космической связи Компьютерное моделирование системы наведения взаимодействующих терминалов лазерной космической связи Компьютерное моделирование системы наведения взаимодействующих терминалов лазерной космической связи Компьютерное моделирование системы наведения взаимодействующих терминалов лазерной космической связи Компьютерное моделирование системы наведения взаимодействующих терминалов лазерной космической связи Компьютерное моделирование системы наведения взаимодействующих терминалов лазерной космической связи Компьютерное моделирование системы наведения взаимодействующих терминалов лазерной космической связи Компьютерное моделирование системы наведения взаимодействующих терминалов лазерной космической связи Компьютерное моделирование системы наведения взаимодействующих терминалов лазерной космической связи Компьютерное моделирование системы наведения взаимодействующих терминалов лазерной космической связи Компьютерное моделирование системы наведения взаимодействующих терминалов лазерной космической связи Компьютерное моделирование системы наведения взаимодействующих терминалов лазерной космической связи
>

Диссертация - 480 руб., доставка 10 минут, круглосуточно, без выходных и праздников

Автореферат - бесплатно, доставка 10 минут, круглосуточно, без выходных и праздников

Артёмов Александр Григорьевич. Компьютерное моделирование системы наведения взаимодействующих терминалов лазерной космической связи : дис. ... канд. техн. наук : 05.11.07 Москва, 2006 81 с. РГБ ОД, 61:07-5/1614

Содержание к диссертации

Введение

Глава 1. Компьютерная модель и ее возможности 10

1.1. Краткая история создания и развития модели 10

1.2. Моделируемые объекты 12

1.3. Устройство модели 16

1.4 Расчет мощности излучения на входе в оптическую систему 18

1.5. Модуль скоростного привода 20

1.6 Модуль квадрантных пеленгаторов с фотоприемниками 31

1.7 Модуль матричного пеленгатора 38

1.8 Модуль быстродействующего направляющего зеркала 42

1.9 Модуль движения космических аппаратов по орбитам 44

1.10 Генератор случайных чисел с нормальным законом распределения..47

2. Исследования с использованием модели 50

2.1. Выбор мощности маяка 50

2.2 Вхождение в связь (МКС-НП) 54

2.3. Процедура вхождения в связь для линии «НКА-ГКА» 59

2.4. Возможность использования на линии «НКА - наземный пункт» терминала НКА, предназначенного для связи с ГКА 63

2.5. Проблема удержания информационного луча на терминале абонента 68

Заключение 74

Основные результаты и выводы 75

Положения, выносимые на защиту 76

Публикации по теме диссертации 77

Использованная литература 78

Приложение

Введение к работе

Двадцать первый век по праву можно назвать веком высоких технологий. Вместе с технологическим прорывом, и дополняя его, идет бурное развитие в области информации. Информация — это своего рода товар будущего. Доставка этого «товара» в любую точку Земного шара, по возможности в реальном масштабе времени, заставляет информационный бизнес все более и более увеличивать скорость передачи данных. Так, оптико-волоконные наземные коммуникационные сети уже подходят к рубежу сотен гигабит в секунду.

Лазерная космическая связь — как одно из перспективных средств доставки информации — обладает рядом преимуществ перед связью в радиотехническом диапазоне. Прежде всего, это потенциально гораздо более высокая пропускная способность, обусловленная меньшей длиной волны. Кроме того, лазерные системы, благодаря возможности формировать очень узкие диаграммы направленности, требуют существенно меньших размеров антенн и меньшего энергопотребления. Однако узкий лазерный пучок — это «палка о двух концах»: ведь чем он уже, тем труднее наводить его на терминал абонента и удерживать на телескопах последнего.

Реальность космической лазерной связи была доказана в ходе реализации экспериментальных космических программ американских и японских специалистов [например, 1]. Последние же сомнения скептиков пропали после успешного проведения эксперимента SILEX Европейского космического агентства, в ходе которого в 2002 году с низкоорбитального спутника наблюдения SPOT-4 на геостационарный ретранслятор ARTEMIS по лазерному каналу были переданы фотоснимки земной поверхности [2]. Внешний вид ретранслятора ARTEMIS, взаимодействующего со SPOT-4, показан на Рис. 1 (источник: www.esa.com).

Актуальность темы

В Федеральном научно-производственном центре ФГУП «НИИ прецизионного приборостроения» развернуты работы по созданию линий космической лазерной связи. В настоящее время проходят стендовые испытания бортового терминала для экспериментальной линии связи между МКС и наземным пунктом. Полным ходом идет создание терминала для низкоорбитального космического аппарата, который должен передавать большие объемы информации в оптическом диапазоне на геостационарный ретранслятор. Планируется в ближайшие годы приступить к разработке и других систем лазерной космической связи — в частности, для группировок низкоорбитальных спутников.

Создание линий космической лазерной связи — задача сложная и во многом (по крайней мере, в отечественном приборостроении) достаточно новая. Одним из важных этапов разработки сложных систем, как известно, является моделирование, позволяющее провести исследования, которые не могут быть выполнены традиционными методами. Действительно, при

\исследовании вопросов наведения узких лазерных пучков с необходимостью учета в работе многоконтурной системы наведения целого ряда возмущающих факторов — в частности, неточностей эфемерид и погрешностей ориентации, приводящих к существованию зоны неопределенности, а также многочисленных шумовых воздействий — точное аналитическое решение крайне затруднительно. Натурный эксперимент, к сожалению, также невозможен (хотя бы по экономическим соображениям). В то же время моделирование, как один из метод научного исследования, особенно на современных компьютерах, позволяет исследовать практически любые сложные процессы численными методами, причем иногда даже в масштабе времени, близком к реальному. Помимо очевидной экономической выгоды, этот подход, при наличии соответствующих компьютерных моделей, позволяет достаточно быстро проводить вариантные расчеты на стадии разработки систем космической лазерной связи и за счет анализа большого числа вариантов повышать качество проектов.

Можно добавить, что в одном из недавних технических заданий на научно-исследовательскую работу по космической лазерной связи Заказчик потребовал включения в отчет результатов математического моделирования.

Конечно, моделирование систем наведения в лазерной связи не ново. Например, в вышедшем почти 20 лет назад американском обзоре, посвященном тогдашнему состоянию в области проектирования лазерных линий космической связи, описана программа LASCOM, разработанная фирмой Aerospace и использовавшаяся для оценки возможностей принципов построения, а также проверки реализуемости заданных характеристик системы наведения для перспективных спутников связи [3]. Эта программа, как можно судить по ее описанию, моделирует процессы, происходящие в подсистемах системы наведения одного терминала лазерной связи, достаточно подробно — вплоть до учета допусков в моделях элементов конструкции!

У разработчиков ФГУП «НИИ прецизионного приборостроения» возникла потребность в аналогичном инструменте исследования применительно к разрабатываемым системам — может быть, для начала программе не столь детализированной (как это могла позволить себе фирма Aerospace), однако предлагающей некую дополнительную возможность: а именно, моделирование одновременной работы двух взаимодействующих терминалов.

Постановка задачи

Основной целью работы являлось исследование работы систем наведения разрабатываемых терминалов лазерной космической связи, оптимизация характеристик разрабатываемого оборудования, в первую очередь, диаграммы направленности излучения маяков и информационных передатчиков, а также их мощности с помощью компьютерной модели. Модель создавалась прежде всего для анализа работы конкретных систем.

Наибольший интерес вызывало моделирование линии связи между низкоорбитальным и геостационарным космическими аппаратами (конкретнее, моделирование совместной работы двух взаимодействующих терминалов), так как в этом случае время распространения светового сигнала от одного терминала до другого достигает 170 миллисекунд, а такая задержка существенно влияет на процесс взаимного наведения.

Моделируемые объекты

Моделируемые системы наведения относятся к оптико-электронным следящим системам, так как носителем энергии принимаемого сигнала служат электромагнитные волны оптического, в данном случае инфракрасного, диапазона.

Информация по устройству подсистем и их параметрам была предоставлена соискателю разработчиками. В задачу же соискателя входило программирование работы всех подсистем с их элементами, создание из модулей подсистем полной модели системы наведения, учитывающей также время и условия распространения сигнала между абонентами, и собственно моделирование конкретных процессов. Рас. 2 Общий вид оптического модуля Общий вид конструкции типичного варианта оптического приемопередающего модуля терминала лазерной связи показан на Рис. 2. На Рис. 3 приведены основные компоненты системы наведения. Рис. З Системи ішчсОстія терминала лазерной космической связи

Исполнительными механизмами контура грубого наведения, управляющими угловым положением телескопов (оптических антенн), обеспечивающих прием оптических сигналов, служат скоростные приводы с моментными двигателями, вращающие две взаимно-перпендикулярные оси опорно-поворотного устройства, на внутренней оси которого и закреплены телескопы. При работе системы в разомкнутом контуре опорно-поворотное устройство позволяет осуществлять отработку целеуказания (разворот осей телескопов в направлении предполагаемого местоположения абонента), программное сопровождение абонента с использованием расчетных скоростных уставок, а также сканирование зоны неопределенности местоположения абонента.

Неотъемлемыми элементами моделируемой системы являются пеленгаторы (угловые дискриминаторы). В контуре грубого наведения, в зависимости от конфигурации системы, используются либо четырехплощадочные (квадрантные), либо многоэлементные (матричные) пеленгаторы.

Квадрантных пеленгаторов обычно два: пеленгатор захвата и пеленгатор сопровождения. Они используются на разных стадиях сеанса связи, и основное различие между ними в том, что у второго более узкое поле зрения и более крутая пеленгационная характеристика. Когда излучение лазерного маяка абонента попадает в поле зрения оптической системы, оно фокусируется на квадрантных фотоприемниках, причем вначале оптический сигнал оказывается на фотоприемнике с более широким полем зрения. Из комбинации сигналов с четырех квадрантов пеленгаторы непрерывно формируют, каждый по двум осям, аналоговые сигналы, пропорциональные рассогласованию между углом оптической оси телескопа и углом линии визирования, направленной на видимое положение маяка абонента. Эти сигналы подаются на скоростные приводы, в результате чего в замкнутом контуре грубого наведения обеспечивается слежение за видимым положением абонента.

Матричные пеленгаторы работают иначе. В них некоторое время идет накопление зарядов на пикселях, после чего происходит считывание этих зарядов, обработка в сигнальном процессоре, и спустя еще некоторое время выдача расчетного положения «центра тяжести» пятна в систему управления. Система же управления формирует из цифровых координат рассогласования аналоговые сигналы и подает их на скоростные приводы.

Так как грубый контур системы наведения — из-за инерционности оптико-механического блока — не в состоянии обеспечить высокую точность наведения луча передатчика на абонента, используя только наведение телескопом, в системах дальней связи имеется контур прецизионного наведения. Квадрантный пеленгатор этого контура вырабатывает сигналы управления быстродействующим направляющим зеркалом, которое позволяет компенсировать погрешность наведения оси телескопа опорно-поворотным устройством и, совместно с механизмом ввода упреждения, обеспечить стабильное направление информационного луча передатчика на терминал абонента.

Ошибки наведения, в системе координат терминала 1, проиллюстрированы на Рис. 4.

Модуль квадрантных пеленгаторов с фотоприемниками

Процесс преобразования падающего на фотоприемники излучения в фототок моделируется с учетом квантовой природы света. Сначала в каждом из четырех квадрантов на каждом шаге определяется математическое ожидание количества фотоэлектронов, возникающих от действия излучения маяка и фоновой засветки. где: РЕК — количество фотоэлектронов в канале одного квадранта за шаг счета; Рск — число сигнальных фотонов в канале одного квадранта (доля всех принятых сигнальных фотонов, зависящая от расположения пятна); Рф — число фотонов фоновой засветки на весь фотоприемник (в ряде случаев для низкоорбитального терминала фоновая засветка отсутствует); ц — кантовая эффективность фотоприемника.

Затем учитываются шумы. Так как статистический процесс превращения фотонов в фотоэлектроны, согласно законам квантовой механики, описывается распределением Пуассона, дисперсия которого равна математическому ожиданию, дробовой шум в каждом квадранте на каждом шаге счета определяется следующим образом: РЕК — упомянутое выше (формула 7) количество фотоэлектронов в канале квадранта; gaussO — функция, возвращающая случайное число с нормальным законом распределения;

Наконец, прибавляется приведенный к числу фотоэлектронов темновой ток фотоприемника, также с добавлением случайной величины, аналогичной приведенной выше.где:DK — шум темнового тока;РЕт — число фотоэлектронов, соответствующее величине темновоготока; gaussQ — функция, возвращающая случайное число с нормальным законом распределения;

Таким образом, полное число фотоэлектронов в квадранте за шаг счета где все слагаемые взяты из формул (7-9).

Укрупненная структурная схема пеленгатора захвата показана на Рис. 12. Пеленгатор сопровождения устроен аналогично. Разница между ними, кроме упомянутой крутизны пеленгационнои характеристики, заключается в логике формирования сигналов и постоянных времени фильтров низкой частоты.

Для пеленгации используется сигнал маяка абонента, модулированный частотой 32 кГц. Это позволяет выделять модулированный полезный сигнал при сравнительно большой величине шумов (темнового тока фотоприемника и фоновой засветки, которые, в отличие от полезного сигнала, не модулированы).Фильтр высокой частоты на входе пеленгатора предназначен для исключения постоянной составляющей входного сигнала, основным источником которой является фоновая засветка. Его передаточная функция в моделигде: Т — постоянная времени фильтра.

Полосовой фильтр, настроенный на пропускание сигнала в узкой полосе частот вблизи 32 кГц, представлен в модели передаточной функцией, реализующей работу конкретной микросхемы фильтра:где: G — коэффициент усиления; В — полоса пропускания, Гц; со — круговая частота, равная 271 32768.

Синхронный детектор умножает синусоидальный (из-за наличия полосового фильтра) сигнал с квадранта на эталонный синусоидальный сигнал, формируемый из суммарного сигнала со всех четырех фотоприемников. В результате получается синусоидальный сигнал удвоенной частоты (64 кГц), среднее значение которого, со знаком, пропорционально сигналу рассогласования.

На выходе пеленгатора установлен частотный корректор, функция которого — обеспечить динамические характеристики контура слежения. Передаточная функция корректора (13) где: к — коэффициент передачи корректора; Т — постоянная времени, с.

При исследовании работы пеленгатора на стадии разработки и отладки его модуля, как и в случае с приводом, вызывало интерес протекание переходных процессов. Сильное влияние на переходные процессы, возникающие прежде всего при появлении пятна маяка в поле зрения пеленгатора, как выяснилось, оказывает работа автоматического регулятора усиления (АРУ).

Из-за того, что мощность сигнала маяка на пеленгаторе может составлять (согласно техническому заданию на разработку пеленгатора) от 20 до 1000 пиковатт, что вызвано различием в длине трассы от сеанса к сеансу и возможным наличием фоновой засветки, — разработчики пеленгатора ввели АРУ для поддержания напряжения суммарного сигнала (см. Рис. 12) в узком динамическом диапазоне. После включения пеленгатора устанавливается максимальный коэффициент усиления (чтобы обнаружить самый слабый сигнал), и каждые 250 миллисекунд, при превышении суммарным напряжением некоего верхнего порогового значения, коэффициент АРУ уменьшается вдвое. Если же суммарное напряжение оказывается ниже нижнего порогового значения, коэффициент АРУ удваивается. Между максимальным и минимальным значениями коэффициента АРУ может сработать еще семь раз, т.е. значение коэффициента меняется от 1 до 256.

Моделировалась процедура движения пятна маяка по полю зрения пеленгатора, в результате чего должна была получиться экспериментальная «пеленгационная характеристика». Вначале был задан достаточно сильный сигнал маяка, а фоновая засветка отсутствовала. Результат показан на Хаотичный шумовой сигнал рассогласования с пеленгатора до появления пятна и после его исчезновения на работу системы наведения не влияет, так как считывание сигнала рассогласования начинается только после того, как пеленгатор сформирует сигнал обнаружения, и прекращается с его исчезновением (пунктирная область на рисунках). Работа АРУ проявляется очень наглядно.

Вхождение в связь (МКС-НП)

Моделировался процесс вхождения в связь и начального слежения для конфигурации линии связи «низкоорбитальный космический аппарат — наземный пункт» с точки зрения бортового терминала. Роль низкоорбитального аппарата играла Международная космическая станция (высота орбиты 360 км, наклонение орбиты 53 градуса), а наземного пункта — пункт на широте Москвы (56 градусов северной широты). Из анализа орбиты МКС был выбран типовой сеанс, в котором максимальная длина трассы составляет 900 км (из условия нахождения МКС выше 20 градусов над горизонтом), а минимальная — 500 км.

Оптическая мощность маяка наземного пункта составляла от 0.6 до 2 Вт (чтобы обеспечить полный диапазон расчетных уровней сигнала на фотоприемниках) при ширине диаграммы направленности излучения маяка 1.5 угловые минуты (по уровню 1/е). Рассматривался вариант конструкции терминала с квадрантными пеленгаторами.

В начальный момент времени (начало сеанса) опорно-поворотное устройство, предварительно развернув телескопы в точку ожидаемого расположения маяка, начинало программное сопровождение цели по ежесекундно изменяемым уставкам скорости (чтобы остановить «бег местности») с наложением растрового сканирования зоны неопределенности, составлявшей 4x4 градуса. При этом скорость сканирования вокруг внешней оси была постоянной и равной 0.2 градуса в минуту, а вокруг внутренней — знакопеременной с абсолютным значением 2 градуса в минуту, при этом знак скорости менялся каждые две секунды. Таким образом, для сканирования всей зоны неопределенности требовалось не более 20 секунд. Цель, расположенная случайным образом в пределах зоны неопределенности, двигалась по расчетной траектории, меняя скорости каждые 100 мс. Время вхождения в связь в зависимости от мощности сигнала маяка на фотоприемнике

В случае вхождения в связь при максимальной длине трассы и минимальном сигнале маяка (максимальная пиковая мощность маяка на фотоприемнике 21 пВт) время от появления сигнала быстрого обнаружения пеленгатора захвата (и прекращения сканирования) до появления сигнала уверенного сопровождения пеленгатора сопровождения составило от 2 до 2.2 секунды. Среднеквадратичная ошибка слежения равнялась примерно 1.5 угловым секундам (что близко к предельно допустимой величине). Траектории движения пятна маяка по полям зрения пеленгаторов на этапе захвата цели приведены на рис. 24-25.

При мощности максимального сигнала на фотоприемнике порядка 2 нВт (при минимальной длине трассы) время между появлением сигналов быстрого обнаружения и уверенного сопровождения составило немногим более одной секунды. Среднеквадратичная ошибка слежения при таком сигнале уменьшилась до 0.4 угловой секунды. Траектории пятна маяка по полям зрения пеленгаторов на этапе захвата приведены на рис. 26-27.

Интересен тот факт, что при сильном сигнале пеленгатор захвата обнаруживает маяк быстрее и система быстрее приводит пятно в поле зрения пеленгатора сопровождения, но время от начала использования сигналов рассогласования пеленгатора сопровождения до момента возможного начала передачи информации в таком случае несколько больше. Хотя общее время захвата — от появления сигнала быстрого обнаружения до начала передачи данных — все равно в случае сильного сигнала маяка меньше. Это, по-видимому, можно объяснить тем, что сильный сигнал пеленгатора разгоняет привод до большей скорости и уменьшение рассогласования происходит с более заметным перерегулированием.

Возможность обнаружения сигнала при прохождении пятна по краю поля зрения фотоприемника

Наконец, на Рис. 28 схематически изображено положение пятна маяка относительно поля зрения пеленгатора захвата в момент появления сигнала быстрого обнаружения, для скорости сканирования 2 градуса в секунду. Видно, что при слабом сигнале маяка сигнал обнаружения формируется позже, чем при сильном сигнале маяка. В случае С, когда центр пятна отстоит от границы поля зрения на величину своего радиуса (по 1/е2), т.е. когда в поле зрения пеленгатора попадает менее одного процента оптической энергии, сигнал обнаружения возникает только при достаточно большой мощности сигнала маяка. Моделировался процесс вхождения в связь абонентов лазерной связи на линии «низкоорбитальный космический аппарат наблюдения — геостационарный ретранслятор». В качестве пеленгаторов грубого контура наведения использовались ПЗС матрицы. Специфика работы матрицы (сложность определения координат пятна, если оно в течение кадра накопления смещается по матрице более чем на 20 пикселей) продиктовала алгоритм сканирования, отличный от упоминавшегося алгоритма растрового сканирования.

Вхождение в связь было организовано по методу «scan-stare» (используя американскую терминологию). Это означает, что терминал только одного космического аппарата сканирует зону неопределенности своим вызывным маяком, а телескопы другого направлены в точку наиболее вероятного нахождения абонента. В рассматриваемом примере сканирующим терминалом был терминал геостационарного ретранслятора, так как для него зона неопределенности (благодаря менее возмущенной орбите геостационарного космического аппарата) меньше, чем для его абонента.

Любой из терминалов, обнаружив маяк абонента, вычислял рассогласование между направлением оси своего телескопа и направлением на абонента, затем определял скорости приводов так, чтобы за одну секунду свести рассогласование к минимуму. С учетом времени задержки выдачи координат матрицей (от 200 мс), времени распространения сигнала (до 170 мс) и времени разворота телескопов (1 секунда) был предложен следующий алгоритм сканирования.

Сканирующий терминал в течение трех секунд (времени, достаточного для того, чтобы при обнаружении его маяка и последующего разворота телескопов абонента сканирующий телескоп успел сам обнаружить маяк абонента) «смотрит» в некую точку пространства. Если за это время маяк

Проблема удержания информационного луча на терминале абонента

Передача информации от одного терминала лазерной космической связи к другому возможна, только если луч передатчика одного терминала попадает на оптические антенны другого. Для обеспечения этого условия система наведения передающего терминала вначале должна обнаружить маяк абонента и развернуть телескопы в его направлении, а затем, при работе в замкнутом контуре, удерживать ось телескопа вблизи линии визирования. Но этого еще мало. Из-за того, что скорость распространения света в вакууме конечна (299800 км/с), за время распространения сигнала между терминалами их положение в пространстве успевает измениться, и следовательно, луч передатчика должен быть направлен не в ту точку, в которой наблюдается абонент и на которую указывает ось телескопа, а уже в другую. Указанную разность направлений принято называть упреждением (английский термин — point-ahead). Другой термин, которым часто пользуются, объясняя упреждение, — это аберрация света.

Строго говоря, величину упреждения следовало бы вычислять по формулам специальной теории относительности, т.е. применять преобразования Лоренца. Однако для линий космической связи, при относительных скоростях движения космических аппаратов до 20 км/с и упреждении до 100 мкрад (т.е. примерно до 20 угловых секунд), результаты вычислений с помощью преобразований Галилея практически не отличаются от результатов, полученных с использованием релятивистской модели.

К недостаткам конструкции двухосного опорно-поворотного устройства, фигурирующего в нашей модели, можно отнести большую скорость вращения (и ускорение!) вокруг внешней оси при расположении линии визирования вблизи этой оси, что вызывает трудности в работе системы слежения в подобной ситуации.

Вычислять величину упреждения можно несколькими методами. Наиболее распространен и наиболее прост такой: угол упреждения вычисляется как отношение удвоенной тангенциальной компоненты относительной линейной скорости аппаратов к скорости света. Применительно к двухосному опорно-поворотному устройству подобный расчет сводится к разложению мгновенного значения вектора разностной скорости в геоцентрической системе координат, получаемого из анализа орбитального движения двух космических аппаратов, на оси приборной системы космического аппарата и затем перевод этого разложения на две оси опорно-поворотного устройства (в плоскости, перпендикулярной направлению линии визирования).

Можно величину упреждения вычислять и иначе, используя переход к движущейся системе координат космического аппарата. Для этого определяется разность углов опорно-поворотного устройства в инерциальном пространстве между направлением на абонента в момент, предшествующий текущему на время распространения света между абонентами, и направлением в момент, следующий за текущим спустя время распространения света между абонентами. Упреждение по угломестной оси равно разности углов места, а по азимутальной, — как видно из Рис. 35, — разности углов азимута, умноженной на косинус угла места. Обозначения на рисунке: AZ2-AZ1 — изменение азимута в инерциальной системе координат за двойное время распространения сигнала; EL2-EL1 — изменение угла места при тех же условиях. возможно. И основной причиной тому — особенности двухосного опорно-поворотного устройства.

Предположим, что терминал лазерной космической связи находится в режиме слежения за сигналом абонента (будь то маяк или информационный луч) в замкнутом контуре. Система управления его информационным лучом вводит величину упреждения, согласно заложенным расчетным величинам, по двум взаимно перпендикулярным направлениям. Но, в отличие от слежения, управление вводом упреждения осуществляется в разомкнутом контуре! И если теперь космический аппарат развернется на некоторый угол вокруг линии визирования (а составляющая такого разворота может присутствовать практически при любом незапланированном маневре космического аппарата), то абонент, конечно, не будет потерян системой слежения и величина упреждения не изменится по абсолютной величине, но направление информационного луча в пространстве повернется на такой же угол.

Отклонение луча приведет к снижению мощности сигнала на приемнике абонента, потому что для гауссова пучка зависимость принимаемой мощности от ошибки наведения выражается формулой (1).

В свою очередь, отношение сигнал/шум определяет вероятность битовой ошибки. Для однополярного кода (Манчестер) эту вероятность можно вычислить по формуле:

Если требуемая битовая ошибка не должна превышать 10"6, рекомендуется применять избыточное кодирование информации с целью уменьшения требуемой мощности сигнала. Так, применение сверточного кода, основанного на алгоритме Витерби (такие кодер-декодеры выпускаются промышленно на микросхемах, по крайней мере, за границей), позволяет уменьшить потребную мощность сигнала примерно в два раза [6].

Итак, проблему удержания информационного луча на абоненте можно было бы решить, если бы системы космического аппарата имели возможность информировать систему управления лазерным терминалом о подобных эволюциях аппарата. Но это не всегда осуществимо. Получить же подобную информацию от опорно-поворотного устройства также проблематично. Остается чуть ли не единственная возможность: организовать для пары взаимодействующих терминалов лазерной связи «обратную связь», позволяющую одному абоненту менять направление луча передатчика в зависимости от реакции другого абонента на изменение принимаемой мощности сигнала.

Идея предлагаемой организации «обратной связи» навеяна итеративными методами поиска оптимума, конкретнее — методом наискорейшего спуска. Суть этого метода заключается в движении в выбранном направлении одинаковыми шагами до тех пор, пока значение целевой функции (например, мощности сигнала на приемнике абонента) увеличивается. Если на каком-то шаге целевой функции уменьшится, то движение в данном направлении прекращается, последний шаг снимается и выбирается новое направление движения [7].

Похожие диссертации на Компьютерное моделирование системы наведения взаимодействующих терминалов лазерной космической связи