Электронная библиотека диссертаций и авторефератов России
dslib.net
Библиотека диссертаций
Навигация
Каталог диссертаций России
Англоязычные диссертации
Диссертации бесплатно
Предстоящие защиты
Рецензии на автореферат
Отчисления авторам
Мой кабинет
Заказы: забрать, оплатить
Мой личный счет
Мой профиль
Мой авторский профиль
Подписки на рассылки



расширенный поиск

Течение неньютоновских жидкостей в рабочих каналах машин по переработке полимерных материалов Кутузов, Александр Григорьевич

Течение неньютоновских жидкостей в рабочих каналах машин по переработке полимерных материалов
<
Течение неньютоновских жидкостей в рабочих каналах машин по переработке полимерных материалов Течение неньютоновских жидкостей в рабочих каналах машин по переработке полимерных материалов Течение неньютоновских жидкостей в рабочих каналах машин по переработке полимерных материалов Течение неньютоновских жидкостей в рабочих каналах машин по переработке полимерных материалов Течение неньютоновских жидкостей в рабочих каналах машин по переработке полимерных материалов
>

Диссертация, - 480 руб., доставка 1-3 часа, с 10-19 (Московское время), кроме воскресенья

Автореферат - бесплатно, доставка 10 минут, круглосуточно, без выходных и праздников

Кутузов, Александр Григорьевич. Течение неньютоновских жидкостей в рабочих каналах машин по переработке полимерных материалов : диссертация ... доктора технических наук : 01.02.05 / Кутузов Александр Григорьевич; [Место защиты: Казан. гос. технол. ун-т].- Казань, 2010.- 385 с.: ил. РГБ ОД, 71 11-5/16

Введение к работе

Одним из важнейших направлений развития химической технологии является совершенствование гидродинамических и тепловых процессов, протекающих в производственных машинах и аппаратах. Полимерные растворы и расплавы при течении в каналах машин и аппаратов химической технологии в ряде случаев показывают эффекты, не характерные для ньютоновских жидкостей. В частности, полимерные жидкости являются материалами с вязкоупругими свойствами, которые ответственны за многие эффекты, происходящие при переработке текучих полимерных систем и получении конечного продукта. К таким эффектам можно отнести образование эластической турбулентности струи при экструзии и особенности миграции газовых пузырьков при каландровании полимерных смесей. С точки зрения исследователя эти свойства должны быть предсказаны заранее, понята их физическая суть, по возможности описаны соответствующими математическими моделями и использованы в расчетной и инженерной практике.

Представленная работа посвящена исследованиям течения неньютоновских жидкостей в рабочих каналах каландров и экструдеров, по результатам которых предложены практические рекомендации по совершенствованию конструкции этих каналов и проектированию технологических режимов переработки полимерных материалов на этих машинах.

Актуальность темы. На предприятиях химической промышленности, прежде всего шинной и резинотехнической, нашли широкое применение машины и аппараты, рабочие органы которых представляют каналы, через выходное сечение которых происходит формование различных изделий. Это относится к таким важным методам переработки полимеров, как каландрование и экструзия. Рабочим органом каландров является канал, образованный валками каландра, а рабочим органом экструдеров является формующий канал экструзионной головки. Распространены следующие схемы работы указанного оборудования: каландр – экструдер (резинотехнические изделия, шины), экструдер – каландр (пленки, листы). Проблемы в работе одного оборудования не только не устраняются работой другого оборудования, но и часто усугубляются. Главными проблемами в производстве указанных изделий являются попадание в изделия газовоздушных включений и эластическая турбулентность при экструзии полимерных материалов.

Несмотря на различные технологические схемы переработки полимеров на каландровых линиях, определяющим элементом является непрерывный процесс течения полимера как неньютоновской жидкости в канале, образованном вращающимися навстречу друг другу валками. При этом в областях деформации между валками происходят сложные гидродинамические и термодинамические процессы, влияющие на качество получаемых изделий и определяющие энергосиловые характеристики оборудования. Технологические режимы работы валковых машин зачастую выбираются в соответствии с многочисленными и разобщенными экспериментальными данными, а не на базе предварительных расчетов и теоретического анализа. Кроме того, при переработке некоторых видов полимеров, например, резиновых смесей, имеют место различные виды брака: разрывы листа и раковины, которые могут появляться при попадании газовоздушных включений в канал между валками. Удаление этих включений остается в настоящее время важной и актуальной проблемой. Таким образом, при математическом описании процессов, протекающих в канале между двумя вращающимся валками, важно не только решение задачи течения неньютоновской жидкости в этом канале с целью определения основных параметров процесса, но и рассмотрение проблемы движения газовоздушных включений в неньютоновской жидкости. Анализ движения дисперсионных включений позволит прояснить механизм их поведения в зоне деформации и использовать это для отыскания оптимального режима работы каландрового агрегата, при котором газовоздушные включения будут удаляться из межвалкового канала. Для интенсификации каландрования полимерных материалов, особенно резиновых смесей, предлагается использовать клиновые устройства. Математическое моделирование течения неньютоновской жидкости в канале между клином и валком каландра и анализ движения газовых пузырей, попадающих в канал, составляют предмет исследования в диссертационной работе.

Важное влияние на устойчивое течение экструдата оказывают следующие эффекты: пульсации давления, связанные с образованием застойных зон в угловых областях формующей головки экструдера, образование радиальной температурной неоднородности экструдата, периодическое проскальзывание экструдата, связанное с ориентацией макромолекул полимеров в пристенных слоях расплава (-эффект) и наличием значительных пиков напряжений и давления в выходном сечении формующей головки. Важность и актуальность результатов исследований этих эффектов, возникающих при течениях реологически сложных жидкостей, заключается еще и в том, что они могут быть использованы при проектировании перерабатывающего оборудования и выборе оптимальных режимов переработки. Таким образом, при моделировании процессов, связанных с переработкой полимеров, требуется учитывать сложное вязкоупругое поведение полимеров. Поняв причины неустойчивого движения полимеров, можно оказывать влияние на этот процесс, контролировать его и управлять им.

Исследования носят межотраслевой характер и проведены в соответствии с Координационным планом РАН «Теоретические основы химической технологии» на 1986-2000 гг., НИР отделения Химии и химической технологии АН Татарстана по теме: «Механика реологических сред в каналах сложной геометрии», этап на 2001 год «Современное представление о реологических конституционных соотношениях для многофазных полимерных систем», этап на 2003 год «Исследование закономерностей формирования надмолекулярных структур», этап на 2004 год «Исследование степени ориентации макромолекул расплава резиновых смесей в формующих инструментах промышленных экструдеров».

Цель работы. Целью работы является совершенствование гидродинамических и тепловых процессов в рабочих каналах машин для производства шин и резинотехнических изделий, в которых межфазная граница играет важную роль, а линия трехфазного контакта является фактором, влияющим на образование и развитие эластической турбулентности.

Для достижения сформулированной цели были поставлены следующие задачи:

1. Разработать математическую модель течения вязкоупругой жидкости в канале между вращающимися валками с использованием клинового устройства.

2. Разработать математические модели движения газовых пузырьков для различных случаев сдвиговых потоков вязкоупругой жидкости и миграции газовых пузырьков в канале, образованном поверхностями вращающегося валка и неподвижного клина.

3. На основе результатов математического моделирования течения неньютоновской жидкости в канале между вращающимися валками с использованием клинового устройства, математического моделирования движения газовых пузырьков в зоне деформации и экспериментальных исследований оценить влияние реологических свойств жидкости и технологических параметров процесса на поведение газовых пузырьков и выходные характеристики процесса каландрования.

4. Путем математического моделирования исследовать следующие основные причины неустойчивого течения экструдата: образование застойных зон в угловых областях формующей головки экструдера, образование радиальной температурной неоднородности экструдата, периодическое проскальзывание экструдата, связанное с ориентацией макромолекул полимеров в пристенных слоях расплава (-эффект) и наличием значительных пиков напряжений и давления в выходном сечении формующей головки.

Научная новизна. Научная новизна работы состоит в том, что, по мнению автора, впервые созданы математические модели течения вязкоупругой жидкости между валками каландра с использованием клинового устройства и в формующей головке экструдера, учитывающие наличие поверхностей раздела фаз; исследованы условия направленной миграции газовых пузырьков и основные причины неустойчивого течения экструдата.

К новым результатам можно отнести:

1. математическую модель движения вязкоупругой жидкости в канале между вращающимися с разными угловыми скоростями валками с использованием клинового устройства, позволяющую рассчитать наилучшие режимные и конструктивные параметры процесса для получения изделия заданного качества;

2. математическую модель движения газовых пузырьков для различных случаев сдвиговых потоков вязкоупругой жидкости; установлено, что газовый пузырек смещается в направлении уменьшения скорости сдвига; скорость боковой миграции пузырька зависит от вида потока, в котором находится пузырек, реологических свойств среды и размеров пузырька;

3. математическую модель миграции газовых пузырьков в канале, образованном поверхностями вращающегося валка и неподвижного клина; оценено влияние реологических свойств жидкости, режимных и конструктивных параметров процесса на скорость миграции и траекторию газовых пузырьков;

4. результаты экспериментальных исследований движения вязкоупругой жидкости и миграции газовых пузырьков в канале между валком и клином; установлено, что применение клинового устройства существенно увеличивает степень дегазации перерабатываемого материала;

5. результаты математического моделирования течения вязкоупругой жидкости в каналах со ступенчатым сужением; установлено существенное влияние формы канала и упругих свойств жидкости на структуру течения вблизи входной области формующей головки экструдера;

6. результаты математического моделирования неизотермического течения вязкоупругой жидкости в каналах со ступенчатым сужением с учетом влияния высокоэластичности жидкости на процесс диссипации механической энергии течения; установлено существенное влияние упругости жидкости на структуру течения вблизи области сужения, что приводит к образованию и росту пиков функции теплового источника и, как следствие, к скачкообразному росту температуры вблизи сужения;

7. результаты математического моделирования экструзии вязкоупругой жидкости с учетом параметра, определяющего внутреннюю микроструктуру этой жидкости, термокапиллярной конвекции и особенностей течения в окрестности межфазных границ и линии трехфазного контакта.

Практическая значимость. Результаты работы по движению вязкоупругой среды в межвалковом канале и миграции газовых пузырьков в каналах различного профиля послужили основой для создания в ОАО «Нижнекамскшина» методик расчета технологических режимов каландрования резиновых смесей.

Результаты работ по моделированию течения вязкоупругих жидкостей во входном канале формующей головки экструдера, моделированию процессов, происходящих при экструзии резиновых смесей в условиях неизотермичности, моделированию экструзии вязкоупругих жидкостей с учетом пристенного скольжения (-эффекта) и особенностей течения в окрестности межфазных границ и линии трехфазного контакта использовались в ОАО «Нижнекамскшина» для проектирования новых формообразующих насадок экструдеров и отработки новых технологий экструзии резиновых смесей. Новые конструкции экструзионных головок имеют новую форму формующего канала для устранения застойных зон и специальное нагревательное устройство для нагрева узкой части формующего канала вблизи выходного сечения (для устранения радиальной температурной неоднородности экструдата и уменьшения степени ориентации макромолекул). Величина участка нагрева и степень нагрева экструзионной головки рассчитывалась по местоположению и величине пиков образующихся пристенных напряжений.

Проведенная модернизация экструдеров в производстве автокамер УК-13М, УК-14М, 205-14, 6.95-16, 8.40-15 и автошин КАМА-205(165/70R13),КАМА-578(175/70R13), БЛ85(175/70R14), КАМА-ART(205/70R14), КАМА-FLAME(205/70R16), КАМА- 201(225/75R15) КАМА-ЕВРО(185/65R1486H) на ОАО «Нижнекамскшина» позволила вдвое уменьшить количество брака в изделиях шинной промышленности.

Достоверность полученных данных. Достоверность полученных экспериментальных данных по измерениям давления в зоне деформации, траектории пузырька в канале между клином и валком, физико-механических показателей обеспечивалась применением аттестованных измерительных средств и апробированных методик измерения и обработки данных, анализом точности измерений, повторяемостью результатов.

Достоверность теоретических результатов гарантируется применением современных методов математического моделирования, базирующихся на общих законах сохранения, использованием теории подобия, апробированных аналитических и численных методов решения, обоснованностью используемых допущений.

Достоверность полученных результатов подтверждается путем сравнения полученных теоретических результатов с данными экспериментов, а также путем сравнения с известными экспериментальными данными и с результатами расчетов других авторов.

Основные положения, выносимые на защиту:

Математическая модель движения вязкоупругой жидкости в канале между вращающимися с различными угловыми скоростями валками с использованием клинового устройства. Математическая модель движения газового пузырька в сдвиговом течении вязкоупругой жидкости в каналах различного профиля. Результаты экспериментальных исследований движения резиновой смеси и движения газовых пузырьков в канале между валком и клином. Результаты математического моделирования изотермического и неизотермического течений вязкоупругой жидкости во входном участке формующей головки экструдера. Результаты математического моделирования течения вязкоупругой жидкости в выходном участке формующей головки экструдера с учетом зависимости конфигурации макромолекул от условий течения. Результаты исследований, направленных на снижение дефектов в изделиях, получаемых каландрованием и экструзией.

Апробация работы. Основные результаты работы доложены на отчетных научно-технических конференциях КХТИ-КГТУ, г. Казань, 1989-2007г.г.; II-ой региональной научно-технической конференции «Математическое моделирование в процессах производства и переработки полимерных материалов», г. Пермь, 1990г.; XV Всесоюзном симпозиуме по реологии, г. Одесса, 1990г.; III-ей региональной научно-технической конференции «Математическое моделирование в процессах производства и переработки полимерных материалов», г. Пермь,1992г.; научно-технической конференции «Математические методы в химии и химической технологии», г. Тверь, 1995г.; IV-ой конференции по интенсификации нефтехимических процессов «Нефтехимия-96», г. Нижнекамск, 1996г.; научной конференции «Проблемы нефтехимического и органического синтеза», г. Нижнекамск, 1998г.; международной научно-технической конференции «Технико-экономические проблемы промышленного производства», г. Набережные Челны, 2000г.; 11-ом, 12-ом и 13-ом симпозиумах «Проблемы шин и резинокордных систем», г. Москва, 2000г., 2001г., 2002г.; Российском национальном симпозиуме по энергетике, г. Казань, 2001г.; VI-ой международной конференции нефтехимических процессов «Нефтехимия-2002», г. Нижнекамск, 2002г.; международной научно-практической конференции «Инновационные процессы в области образования, науки и производства», г. Нижнекамск, 2004г.; VII-ой международной конференции по интенсификации нефтехимических процессов «Нефтехимия-2005», г. Нижнекамск, 2005г.; межвузовской научно-практической конференции «Актуальные проблемы образования, науки и производства», г. Нижнекамск, 2006г.; XX-ой международной научной конференции «Математические методы в технике и технологиях», г. Ярославль, 2007г.

Публикации. По теме диссертации опубликовано 57 печатных работ, в том числе 1 монография, 17 публикаций в центральных изданиях, включенных в перечень периодических изданий ВАК РФ.

Личный вклад автора в опубликованных в соавторстве работах состоит в постановке цели и задач исследований, выборе методики экспериментов, непосредственном участии в их проведении, анализе и обобщении экспериментальных результатов, в разработке всех математических моделей. Вклад автора является решающим на всех стадиях работы.

Структура и объем диссертации. Диссертация состоит из введения, восьми глав, заключения, списка литературы и приложения. Содержание диссертации изложено на 379 страницах машинописного текста, содержит 166 рисунков. Список использованной литературы включает 299 наименований.

Похожие диссертации на Течение неньютоновских жидкостей в рабочих каналах машин по переработке полимерных материалов