Содержание к диссертации
Введение
1. Постановка задач и схемы расчленения 23
1.1. Задача о действии ударной нагрузки нормального типа на торец полуполосы 24
1.2. Поверхностные и торцевые ударные воздействия нормального типа на цилиндрическую оболочку. Постановка задачи 27
1.3. Расчленение нестационарного НДС цилиндрических оболочек на составляющие с различными показателями изменяемости 31
1.4. Поверхностные и торцевые ударные воздействия нормального типа на цилиндрическую оболочку. Теория типа Тимошенко 36
2. Вывод приближенных уравнений поля Рэлея 39
2.1. Вывод приближенных уравнений поля Рэлея при ударных торцевых воздействиях нормального типа на торец полуполосы 40
2.2. Решение приближенных уравнений для погранслоя в окрестности условного фронта волны Рэлея. Сопоставление с точным решением 52
2.3. Вывод приближенных уравнений поля Рэлея для цилиндрической оболочки 59
3. Задача о действии сосредоточенных сил на поверхность оболочки 70
3.1. Изгибная длинноволновая составляющая 71
3.2. Поле Рэлея 76
3.3. Решение по теории типа Тимошенко 80
3.4. Решение задачи в трехмерной постановке 83
3.5. Области согласования и численные примеры 87
4. Задача о действии нагрузки нормального типа на торец полубесконечной оболочки 95
4.1. Решение по методу расчленения напряженного состояния 96
4.2. Решение по теории типа Тимошенко и численные примеры 105
Заключение 111
- Поверхностные и торцевые ударные воздействия нормального типа на цилиндрическую оболочку. Постановка задачи
- Решение приближенных уравнений для погранслоя в окрестности условного фронта волны Рэлея. Сопоставление с точным решением
- Поле Рэлея
- Решение по теории типа Тимошенко и численные примеры
Введение к работе
Актуальность темы. В современном мире оболочечные конструкции широко применяются во многих отраслях производства, таких, как авиа- и ракетостроение, машиностроение, строительная индустрия. Знание закономерностей распространения нестационарных волн в оболочках является основой для анализа и систематизации данных, относящихся к практически используемым конструкциям. Непрерывное усложнение машин и механизмов, наращивание мощностей приводит к увеличению динамических нагрузок на их элементы. Вследствие этого появляются эффекты, для описания которых недостаточно имеющихся приближенных теорий. Поэтому так актуальны проблемы обоснования перехода от трехмерных краевых задач теории упругости к двумерным задачам и оценки возникающих при этом погрешностей. Особое место в теории пластин и оболочек занимают задачи нестационарной динамики, поскольку в таких задачах изменяемость искомого решения существенно неоднородна по координатам и по времени. Теоретический и прикладной интерес представляет напряженное состояние при ударных нагрузках, моделируемых импульсными функциями. Асимптотические методы исследования НДС в задачах такого типа детально разработаны в трудах У.К. Нигула, Ю.Д. Каплунова, Л.Ю. Коссовича и др. Однако построение схемы расчленения для воздействий нормального типа (воздействий вида NW) до сих пор не было завершено. Это было связано с тем, что, в отличие от рассмотренных ранее воздействий тангенциального и изгибающего типов, нормальные воздействия приводят к принципиально новой схеме расчленения, в которой должен быть учтен условный фронт поверхностной волны Рэлея.
Целью данной диссертационной работы является исследование нестационарного волнового напряженно-деформированного состояния (НДС) в упругой полуполосе и в цилиндрических оболочках при поверхностных и торцевых ударных воздействиях нормального типа. В работе развивается асимптотический подход к решению задач о нестационарных волновых процессах в оболочках.
Из поставленной цели вытекают следующие задачи:
построение асимптотической модели для нахождения решения в окрестности условного фронта поверхностной волны Рэлея в упругой полуполосе при торцевом воздействии нормального вида и обобщение этой модели для случая оболочки;
разработка асимптотической схемы расчленения напряженно-деформированного состояния оболочки на составляющие и методов аналитического решения задач для всех составляющих.
Научная новизна: На основе символического метода А.И. Лурье получены асимптотические модели, позволяющие описать дальнее поле волны Рэлея при действии ударной нагрузки нормального типа на торец полуполосы и полубесконечной цилиндрической оболочки, а также при действии ударной нормальной нагрузки на лицевые поверхности бесконечной оболочки. Построена асимптотическая схема расчленения нестационарного НДС оболочки при ударных воздействиях нормального типа, найдены решения приближенных уравнений для каждой из составляющих и установлено наличие областей согласования между ними.
Практическая значимость работы состоит в расширении области действия асимптотических методов исследования нестационарных волновых процессов в оболочках. Представленные методы позволят решить вопрос создания надежных и эффективных численно-аналитических методов исследования динамического НДС пластин и оболочек, необходимых в авиастроении, машиностроении, судостроении и других отраслях промышленности.
Результаты диссертационной работы могут также применяться при чтении спецкурсов по специальности «Механика».
На защиту выносятся следующие положения:
-
Разработка асимптотических моделей для нахождения решения в окрестности условного фронта поверхностной волны Рэлея в упругой полуполосе и цилиндрической оболочке при действии торцевой ударной нагрузки нормального типа.
-
Разработка приближенной теории, описывающей дальнее поле волны Рэлея в цилиндрической оболочке при ударном нормальном воздействии на её поверхность.
-
Развитие асимптотического метода расчленения нестационарного НДС оболочки на составляющие для случая поверхностных и торцевых воздействий нормального типа.
-
Построение решений приближенных уравнений для каждой из составляющих и установление наличия областей согласования между ними.
Достоверность и обоснованность научных положений и выводов обеспечивается применением при решении поставленных задач апробированных асимптотических методов и приближенных теорий, строгостью используемых математических методов, подтверждается непротиворечивостью полученных результатов, физическими соображениям, сравнением приближенных решений модельных задач, полученных асимптотическими методами, с точными решениями.
Апробация работы. Основные положения и работа в целом докладывалась и обсуждалась наследующих международных, всероссийских, региональных научных конференциях, семинарах и школах:
-
Международный семинар «Дни дифракции». Санкт-Петербург. 29 июня – 2 июля 2004 г.
-
V Российская конференция с международным участием «Смешанные задачи механики деформируемого тела». Саратов: 23–25 августа 2005 г.
-
IX Всероссийский съезд по теоретической и прикладной механике. 22–28 августа 2006 г. Нижний Новгород.
-
Всероссийская сессия Научного совета РАН по механике деформируемого твердого тела «Фундаментальные и прикладные проблемы деформируемого твердого тела». 2–6 июля 2007 г. Самара.
-
Юбилейная школа-семинар «Проблемы современной механики твердого тела и прикладной математики», к 70-летию доктора физико-математических наук, профессора Г.И. Быковцева. Самара. 29 января – 1 февраля 2008 г.
-
Всероссийская научно–технической конференция «Новые инфор-мационные технологии». Москва. 2006, 2009 гг., 19–21 апреля 2010 г.
-
Научный семинар «Актуальные проблемы математики и механики» под руководством доктора физико-математический наук, профессора В.А. Ковалева. Москва, Московский городской университет управления Правительства Москвы. 14 декабря 2009 г.
-
Научный семинар «Современные проблемы математики и механики» под руководством доктора физико-математический наук, профессора Ю.Н. Радаева. Самара, Самарский государственный университет. 17 февраля 2010 г.
-
Научный семинар кафедры математической теории упругости и биомеханики Саратовского государственного университета под руководством доктора физико-математических наук, профессора Л.Ю. Коссовича. Саратов. 2009–2010 гг.
Публикации. По теме диссертации опубликовано 13 работ [1–13]. Работы с соавторами выполнены на паритетных началах.
Структура и объем диссертации. Диссертация состоит из введения, четырех глав, заключения. Список литературы содержит 126 наименования. Общий объем работы составляет 125 страниц, в том числе рисунков и графиков 21.
Поверхностные и торцевые ударные воздействия нормального типа на цилиндрическую оболочку. Постановка задачи
В современном мире оболочечные конструкции широко применяются во многих отраслях производства, таких, как авиа- и ракетостроение, машиностроение, строительная индустрия. Знание закономерностей распространения нестационарных волн в оболочках является основой для анализа и систематизации данных, относящихся к практически используемым конструкциям. Непрерывное усложнение машин и механизмов, наращивание мощностей приводит к увеличению динамических нагрузок на их элементы. Вследствие этого появляются эффекты, для описания которых недостаточно имеющихся приближенных теорий. Поэтому так актуальны проблемы обоснования перехода от трехмерных краевых задач теории упругости к двумерным задачам и оценки возникающих при этом погрешностей. Особое место в теории пластин и оболочек занимают задачи нестационарной динамики, поскольку в таких задачах изменяемость искомого решения существенно неоднородна по координатам и по времени. Теоретический и прикладной интерес представляет напряженное состояние при ударных нагрузках, моделируемых импульсными функциями. Состояние исследований по изучению переходных волновых процессов деформации изгибного типа, вызванных действующей нагрузкой в бесконечных и полубесконечных плитах, балках и оболочках охарактеризовано в обзорах [1,2,11,13,17,33,51,69,73,76,83,96,107,111,113,123]. На основе элементарной теории изгиба решены многочисленные задачи расчета плит и оболочек. В динамике балок первая поправка к элементарной теории была внесена еще Релеєм, предложившим учесть инерцию вращения. СП. Тимошенко показал в 1921 г., что учет сдвига дает поправку такого же порядка. Он вывел уравнение балки, учитывающее поправки от сдвига и от инерции вращения [126]. Эти поправки приводит к отказу от элементарной теории (прямолинейная нормаль к срединной поверхности не остается нормалью после деформации). Я.С. Уфлянд был первым, применившим [96] теорию типа Тимошенко к анализу переходных волновых процессов, вызванных сосредоточенной импульсной нагрузкой в бесконечной плите и балке. Он использовал преобразование Лапласа.
Поскольку полученные интегралы Меллина, в отличие от интегралов в теории Кирхгофа, не поддались обращению в замкнутом виде, то Я.С. Уфлянд предложил проводить их к суммам определенных интегралов по берегам срезов плоскости s, обеспечивающих однозначность подынтегральных функций. На основе этого подхода для обращения интегралов в [96] были получены некоторые численные данные. Позже различные аспекты применения теории плит и балок типа Тимошенко рассматривались в многочисленных работах [11,33,70,104,105,107,112,122]. В работах [11,33,70,96,104, 105,107,112,122] были решены конкретные задачи при помощи операционного исчисления. В основном использовалось преобразование Лапласа [11,33,70,96,104,107,122], но нашло применение и преобразование Фурье по координате [107,112], при построении формальных решений в виде контурных интегралов, которые были обращены методом перевала. Методом интегрирования по берегам срезов плоскости s в работе [104] был получен ряд диаграмм. В работах [11,12,70] приведены результаты, полученные методом сеток с выделение частных решений, переносящих разрывы первых и вторых производных нормального прогиба и угла поворота. Проблема применимости теории типа Тимошенко рассматривалась на основе трехмерной теории в работе [73]. Было установлено, что теория типа Тимошенко не применима в области от фронта волны сжатия до условного фронта поверхностных волн Релея, а также в непосредственной близости от данного фронта волны. В этом исследовании] приведен также ряд численных данных о точности теории типа Тимошенко в области, где её можно считать практически применимой. Применение трехмерной теории упругости к расчету изгиба плит в работах [33,73,89,112] были получены ряд численных данных в результате приближенного обращения некоторого числа первых интегралов методом перевала. Ю. Микловиц [121,123] исследовал осесимметричный волновой процесс, возбужденный в бесконечной плите действием двух сосредоточенных сил, приложенных к свободным поверхностям плиты и направленных друг к другу.
Были применены преобразование Лапласа по времени и преобразование Ханкеля по координате. Первое обращение выполнялось при помощи вычетов, для второго обращения использовался методом перевала, в котором были учтены три первых контурных интеграла. Динамике стержней и пластин посвящены работы В.В.Новожилова и Л.И. Слепяна [80,87,88]. В них изучались свойства аналитических решений задач при рассмотрении переходных волновых процессов в стержнях и пластинах, анализировалась работа принципа Сен-Венана. Было показано, что главная часть деформаций, которая соответствует внезапно приложенным самоуравновешанным по сечению нагрузкам, локализируется вблизи фронтов волн и того сечения, где приложена нагрузка. Проведенный анализ областей действия различных теорий позволил использовать для решения задач в начале движения и в окрестностях фронтов волн разные методы.
Решение приближенных уравнений для погранслоя в окрестности условного фронта волны Рэлея. Сопоставление с точным решением
Существующие методы сведения трехмерных задач теории упругости к двумерным задачам теорий пластин и оболочек условно делятся на методы гипотез, методы разложения по толщине и асимптотические методы. В случае простых геометрических объектов (например, плит) алгоритм степенных рядов может быть успешно применен в форме символического метода А.И. Лурье [66,67] или в форме метода начальных функций В.З. Власова [14,15]. Символические формулы трехмерной теории динамики плит представлены в работе [74] для деформации, антисимметричной относительно срединной поверхности. В символической теории применяются бесконечные ряды, а во всех других вариантах используются усеченные ряды. Направление исследований, связанное с асимптотическим интегрированием уравнений трехмерной теории упругости развивалось в работах А.Л. Гольденвейзера, А. Грина [110], Б. Новотны [103] и др. В работах Г.И. Петрашеня и Л.А. Молоткова [8,82-86] методом асимптотического анализа был исследован вопрос о границах применимостей уравнений классической теории изгиба плит, в динамических задачах. Основная идея, использованная в [83], состоит в сопоставлении формальных решений (контурных интегралов), полученных на основе трехмерной теории и двумерных теорий. В ходе этого сопоставления пользуются разложением точного изображения по степеням нормальной координаты z. Основополагающие понятия показателя изменяемости напряженно-деформированного состояния (НДС) по пространственным координатам и операции растяжения масштаба в уравнениях теории упругости связаны в первую очередь с работами А.Л.Гольденвейзера [17-27,108]. При рассмотрении статических задач, посвященных построению двумерной теории оболочек, вводился малый безразмерный параметр, равный отношению толщины оболочки к характерному радиусу. Введение данных величин сделало возможным построение для статических задач основного итерационного процесса, который приводит в первых приближениях к двумерным теориям оболочек.
Было показано, что дополнительный итерационный процесс приводит к принципиально новым теориям — теории плоского и антиплоского погранслоев. Одним из важных результатов, связанных с построением итерационного процесса, явилась возможность асимптотической оценки погрешности двумерных теорий, теорий пластин и оболочек, связанной со значениями показателей изменяемости НДС. Особую сложность проблема обоснования перехода от трехмерных краевых задач теории упругости к двумерным краевым задачам математической физики имеет в динамических задачах. Переходные процессы деформации имеют место в течение промежутка времени, соизмеримого с временем пробега волнами деформаций пути, равного характерному размеру срединной поверхности оболочки. При этом можно выделить возмущенные области, границы которых определяются фронтами волн. На фронте волны часть компонент НДС или их производные терпят разрыв. В случае, когда нагрузки задаются достаточно гладкими по времени функциями, влиянием этих разрывов на напряженное состояние можно пренебречь. Теоретический и прикладной интерес представляет изучение НДС в окрестностях фронтов волн для так называемых ударных нагрузок, моделируемых импульсными функциями. Динамике тонких упругих оболочек посвящены работы А.Л. Гольденвейзера [20,24]. В работе [20] для интегралов двумерных динамических уравнений теории оболочек была введена классификация, аналогичная статическому случаю. Было показано, что в динамике при построении классификации необходимо учитывать изменяемость напряженного состояния по времени. В работе [25] рассмотрены динамические трехмерные уравнения теории упругости и свойства их интегралов в случае, когда тело тонкое и его лицевые поверхности не закреплены. Получена связь данных интегралов и интегралов двумерных уравнений теории оболочек и теории погранслоя. В работе [27] сформулирован модифицированный принцип Сен-Венана, обуславливающий затухание асимптотически главной части НДС, вызванный системой сил, приложенной к торцу тонкого упругого тела. Получены условия выполнения модифицированного принципа Сен-Венана и изучена возможность их использования при построении итерационных процессов интегрирование общих уравнений теории упругости. Асимптотический метод был применен также для изучения свободных колебаний оболочек на основе двумерной классической теории оболочек. Им посвящены работы А.Л. Гольденвейзера, Ю.Д. Каплунова, Л.Ю. Коссовича, Е.П. Товстика [95] и др. Однако до недавнего времени асимптотические методы недостаточно полно использовались при решении задач нестационарной динамики оболочек.
Это объясняется следующими фактами. На задачи нестационарной динамики оболочек нельзя формально перенести понятие показателя изменяемости искомого решения. Изменяемость решения оказывается неоднородной в различных частях области определения: если вдали от точки приложения нагрузки и фронта волны она невелика, то вблизи этих областей она, монотонно возрастая, становится большой. Таким образом, сами понятия показателей изменяемости НДС по времени и в пространстве требуют глубокого исследования. Кроме того, изменяемость НДСЦ2 вблизи точки приложения нагрузки и вблизи фронта волны заведомо ВЕ зог:одіит за рамки применимости двумерной теории оболочек. Следовательно, і задачах нестационарной динамики не проходит асимптотический метод рас=-сз:Лен НДС в классической форме. При решении нестационарных задач П1Р оводится расчленение напряженного состояния на элементарные COCTa.:&jxsiioume имеющие в своих областях применимости однородные изменяенч/гости по координатам и времени. Это позволяет построить для элем:еНтат составляющих в рамках некоторой заданной погрешности асимпі-отически оптимальные уравнения, которые имеют более простой вид по сразНен исходными. Одними из первых работ, связанных с изучением динамичесгЕсого идо оболочек и использованием метода расчленения были работы Н. Ч _ Алумяэ Л. Поверуса, У.К. Нигула [3-6,71,78,79,125]. В работе [3] исс=-Педовался осесимметричный переходный процесс в полубесконечной круговой цилиндрической оболочке, вызванный действием краевой Нагрузки меняющейся во времени по синусоидальному закону. В [4] краева_зэ: нагрузка на оболочку задавалась во времени функцией Хевисайда, а ЕГО дуговой координате менялась по закону косинуса. В [3] асимптотическое ращение контурных интегралов от изображений решений по Лапласу Позволило разложить НДС на безмоментное решение и краевые эффекты. 13 статье Г41 расчленение напряженных состояний проводилось с учетом Показателя изменяемости по времени.
Поле Рэлея
В работе [102] решалась задача об определении осесимметричных напряжений, возникающих в результате удара полубесконечной упругой цилиндрической оболочки, двигающейся с осевой скоростью по направлению к жесткой преграде. С помощью безмоментной теории были получены не только главный член асимптотического разложения для больших значений времени, но и дополнительные члены. Это позволило оценить точность решения для точек, находящихся далеко позади фронта волны. Кроме того, было получено решение, имеющее силу вблизи фронта волны. В работе [68] А.П. Малышева рассматривались одномерные волновые процессы в оболочках вращения, возникающие при действии быстроизменяющихся нагрузок. В работе показано, что величина разрыва на фронте продольной волны остается постоянной. Полученные результаты демонстрируют разделение НДС оболочки на безмоментное состояние и краевой эффект. При решении задач нестационарной динамики большинство используемых методов основывается на применении интегральных преобразований Лапласа и Фурье. В работах [11,12] Н.Д. Векслер для получения решения в начальные промежутки времени использовал метод прифронтовой асимптотики, основанный на разложении изображений по Лапласу в ряды по отрицательным степеням параметра преобразования. С удалением от фронтов использовались методы перевала и стационарной фазы. Разнообразные методы обращения решения двумерных задач для стержней и пластин и безмоментных задач для цилиндрических оболочек, основанные на аналитических свойствах интегральных преобразований, освящены в [32,64,87,88,97,98]. Значительный вклад в развитие асимптотических методов решения нестационарных задач теории оболочек внесли работы Л.Ю. Коссовича. [53- 57]. Исследования нестационарного волнового НДС оболочек вращения проводилось в [53] с использованием понятия показателя изменяемости, введенного А.Л. Гольденвейзером. Рассматривался один из важных классов нестационарных задач - задач о распространении волн деформаций в оболочках вращения под действием ударных нагрузок, приложенных к торцу оболочки.
В работе [53] исследовались осе симметричные волновые процессы в оболочках вращения. Были выделены тангенциальная составляющая, описывающая распространение волны растяжения-сжатия, и нетангенциальная составляющая, описывающая распространение изгибной и сдвиговой волн. В случае неосесимметричных воздействий в [54] проведено исследование областей согласования интегралов теории Кирхгофа-Лява, описывающих НДС в областях оболочки, примыкающих к торцу и погранслоя, описывающего напряженное состояние в прифронтовых областях. Установление областей согласования динамического краевого эффекта, описываемого теорией Киргофа-Лява, и антисимметричной составляющей быстроизменяющегося прифронтового поля было проведено в [55]. Здесь же определены зоны действия приближенных теорий и расположения областей согласования этих теорий. В монографии [56] были разработаны асимптотические подходы к нестационарным задачам для оболочки вращения с меридианом произвольной формы, основанные на расчленении НДС на безмоментную, моментную составляющие и погранслой с различными показателями изменяемости. Были установлены области действия в фазовой плоскости всех составляющих и доказано сращивание безмоментной составляющей и плоского обратносимметричного погранслоя. Была показана связь различного типа асимптотик двумерных решений со свойствами областей их применимости. На основании такого анализа был разработан подход к получению таких асимптотик без использования интегральных преобразований. Несмотря на значительное количество работ, посвященных применению асимптотических методов к задачам динамики оболочек в двумерной постановке, асимптотический вывод двумерных уравнений из трехмерных уравнений теории упругости ранее не был осуществлен. В работе Ю.Д. Каплунова, И.В.Кирилловой, Л.Ю. Коссовича [38] проведено асимптотическое интегрирование трехмерных динамических уравнений теории упругости для случая тонких оболочек. Были получены предельные двумерные системы. Исследования Ю.Д. Каплунова [34-37,109] внесли существенный вклад в изучение нестационарных волновых процессов. В [34] к построению двумерных уравнений теории оболочек описывающих высокочастотные НДС малой изменяемости, применялся метод асимптотического интегрирования трехмерных динамических уравнений теории упругости. Были установлены области применимости и погрешность полученных уравнений. Исследования высокочастотных колебаний оболочки вращения проводились в [35]. В [36] Ю.Д. Каплуновым и Е.В. Нольде проводился асимптотический анализ трехмерных динамических уравнений теории упругости для случая изгиба пластин. В отличие от большинства работ, посвященных асимптотическому построению двумерной динамической теории пластин, два безразмерных асимптотических параметра (показатель изменяемости и показатель динамичности) полагались независимыми. В работах [26,109] обсуждаются линейные ТР теории (по имени СП. Тимошенко и Е. Рейснера) пластин и оболочек, т.е. теории, учитывающие деформацию поперечного сдвига и инерцию вращения.
Ставится вопрос об их построении асимптотическим методом и о вытекающих из этого оценках погрешностей для задач статики и динамики. Предлагается метод расширения применимости ТР теорий для динамических задач. Принципиально новым является результат, приведенный в [115]. Было показано, что для определения НДС оболочки вращения в окрестности квазифронта вместо общих уравнений коротковолновой высокочастотной составляющей можно использовать уравнения теории Кирхгофа-Лява с учетом оператора приведенной инерции. Уточнение этих уравнений позволяет расширить область применимости классической двумерной теории. Значительное время сфера применения асимптотических методов в нестационарной динамике тонких упругих тел ограничивалось случаями пластины, круговой цилиндрической оболочки и оболочкой вращения. Результаты исследований в области асимптотической теории тонких упругих тел обобщены Ю.Д. Каплуновым, Л.Ю. Коссовичем, Е.В. Нольде в монографии [114]. На основе трехмерных уравнений теории упругости получены асимптотически оптимальные уравнения низкочастотных, высокочастотных и длинноволновых высокочастотных приближений, позволяющие в совокупности описать как стационарные, так и нестационарные динамические процессы. Разработаны двумерные теории высшего порядка пластин и оболочек, рассмотрены задачи колебания оболочек вращения, тонких тел в среде, излучения тонкими телами. Выведены асимптотически оптимальные уравнения динамических погранслоев в окрестностях фронтов волн расширения и сдвига, в окрестности квазифронта. Окончательная форма расчленения нестационарного НДС оболочки вращения описана в [57] при торцевых ударных воздействиях видов LT и LM. Развитие предложенных методов для новых классов задач было проведено в следующих направлениях: - изучение установления стационарных процессов [43,62]; — анализ волн в случаях новых классов ударных воздействий [100]; - исследование отраженных и прошедших волн в подкрепленных оболочках вращения и в оболочках ступенчато-переменной толщины [52,81]; — исследование влияния трансверсально-изотропного упругого материала на нестационарные волны [63,99].
Решение по теории типа Тимошенко и численные примеры
Существование нестационарной волны Рэлея, возникающей при силовом воздействии на свободную поверхность упругого полупространства, было впервые установлено в классической работе Лэмба [117]. В случае локализованного воздействия типа сосредоточенной силы данная волна выглядит как существенный всплеск НДС, быстро затухающий с глубиной и распространяющийся вдоль поверхности тела со скоростью стационарной волны Рэлея [16,29,118]. В работе [39] (для случая полупространства, находящегося в условиях плоской деформации) впервые была предложена асимптотическая модель, направленная непосредственно на описание поля волны Рэлея. Эта модель включает в себя одномерное волновое уравнение, содержащее в явном виде скорость волны Рэлея и описывающее распространение волны вдоль поверхности, и краевые задачи Неймана для потенциалов Ламе, описывающие затухание волнового поля вглубь полупространства. Приближенная теория [39] существенно облегчает количественный и качественный анализ поля нестационарной волны Рэлея. Решения приближенных уравнений, представляющих собой классические уравнения математической физики, легко записываются в замкнутой форме. Кроме того, сама структура приближенной модели соответствует интуитивным представлениям о волне Рэлея, отражая её основные свойства: распространение вдоль поверхности с определенной скоростью и затухание с глубиной. Результаты работы [39] распространены в работе [61] на случай дальнего поля Рэлея в бесконечном упругом слое при нормальном воздействии на его поверхности. Схема расчленения для случая воздействий нормального типа на поверхность пластины построена в работах [59,60]. Целью данной диссертационной работы является исследование нестационарного волнового НДС в упругой полуполосе и в цилиндрических оболочках при поверхностных и торцевых ударных воздействиях нормального типа.
В работе развивается асимптотический подход к решению задач о нестационарных волновых процессах в оболочках. Из поставленной цели вытекают следующие задачи: - построение асимптотической модели для нахождения решения в окрестности условного фронта поверхностной волны Рэлея в упругой полуполосе при торцевом воздействии нормального вида и обобщение этой модели для случая оболочки; - разработка асимптотической схемы расчленения НДС оболочки на составляющие и методов аналитического решения задач для всех составляющих. Исследование выполнено на базе линейной теории упругости. Полученные приближенные асимптотические решения сопоставляются с точным решением задачи и с решением, полученным по теории оболочек типа Тимошенко с целью изучить возможности последней при описании НДС рассматриваемого типа. В первой главе приводятся постановки задач о распространении упругих волн, вызванных ударными нагрузками нормального типа, для полуполосы и цилиндрической оболочки. Рассматриваются два вида нагрузки (на лицевые поверхности бесконечной оболочки и на торец полубесконечной оболочки), приводящие к различным типам нестационарного НДС. Записанные уравнения позволяют описать нестационарное волновое НДС оболочки при воздействии указанных нагрузок. В момент приложения ударной нагрузки в оболочке возникает система первичных волн, как продольных, так и поперечных, которые начинают распространяться вглубь её. При этом первичные волны, распространяющиеся в продольном направлении, взаимодействуя с лицевыми поверхностями, отражаются от них и, в свою очередь, порождают вторичные волны. Таким образом, в оболочке возникает сложная система волн, распространение которых и описывается приведенными в данном параграфе уравнениями. При решении поставленной задачи используются методы, связанные с анализом суммарного вклада всех волн пакета, а не на изучении вклада отдельно взятой волны. В третьем параграфе первой главы обсуждается метод расчленения НДС оболочки на составляющие с различными показателями изменяемости, который будет применен в следующих главах для решения поставленных задач. Приводится схема расчленения нестационарного НДС, возникающего в оболочке при действии ударной нагрузки нормального типа, и схема областей применимости асимптотических теорий. В последнем параграфе приведена постановка задачи для оболочки по двумерной теории типа Тимошенко. Для этой теории также указана схема расчленения решения на составляющие. Во второй главе на основе символического метода А.И. Лурье выводятся приближенные уравнения для нахождения решения в окрестности условного фронта поверхностной волны Рэлея. В первом параграфе рассматривается поле Рэлея в случае упругой полуполосы, к торцу которой приложено ударное торцевое воздействие нормального типа. Задача сводится к эквивалентной задаче для бесконечного слоя под действием касательной нагрузки, приложенной к лицевым поверхностям. Выводится система приближенных уравнений для определения решения эквивалентной задачи в дальнем поле волны Рэлея. Второй параграф посвящен решению уравнений, выведенных в первом параграфе, и сравнению полученного решения с решением задачи в точной постановке.
Сравнение изображения приближенного решения с асимптотикой изображения точного решения показывает, что в окрестности условного фронта поверхностных волн Рэлея асимптотически главные составляющие решения по точной и приближенной теориям совпадают. В третьем параграфе результаты, полученные ранее для бесконечного слоя и в первом параграфе данной главы для полу полосы, распространяются на случаи бесконечной и полубесконечной цилиндрической оболочки. Третья глава посвящена решению задачи о действии сосредоточенных сил на поверхность оболочки. К решению задачи применяется метод расчленения НДС на составляющие с различными показателями изменяемости. Записаны решения приближенных уравнений для каждой из составляющих НДС оболочки. Получено точное решение задачи в трехмерной постановке, а также решение по теории типа Тимошенко. Решения как точных, так и приближенных уравнений ищутся с помощью метода двукратных интегральных преобразований — Лапласа по времени и Фурье по продольной координате. В последнем параграфе главы приведены численные примеры, подтверждающие применимость приближенных уравнений, выведенных в главе 2, и всей схемы расчленения. Также в этом параграфе анализируется и иллюстрируется численными примерами применимость теории типа Тимошенко для описания нестационарного НДС, возникающего при ударном нормальном воздействии на поверхность оболочки. Показано, что фронт волны Рэлея ошибочно воспринимается теорией типа Тимошенко как фронт волны сдвига с разрывом напряжений по всей толщине пластины, в то время как точное решение имеет разрывы только на поверхности. Кроме того, по теории типа Тимошенко неверно определяется величина скачка перерезывающей силы на условном фронте волны Рэлея. В четвертой главе рассматривается задача определения нестационарного НДС при ударном воздействии на торец полубесконечной оболочки нагрузкой вида NW. К решению задачи также применяется метод расчленения НДС. Получены приближенные решения для каждой из областей на фазовой плоскости и определены области согласования между ними. Во втором параграфе строится решение рассматриваемой задачи по теории типа Тимошенко и сравнивается с результатами, полученными по методу расчленения.