Введение к работе
Актуальность темы
Задачи моделирования многослойных оптических структур, характерные размеры которых (толщина, период) имеют тот же порядок, что и длина волны оптического диапазона, либо меньше нее, в настоящее время, являются актуальными задачами физической оптики.
Результаты решения этих задач имеют применение не только в теоретических и экспериментальных научных исследованиях. Тонкопленочные оптические структуры используются в бытовых и промышленных приборах, в устройствах интегральной оптики, микрооптики в качестве миниатюрных поляризаторов, зеркал, светоделителей и светофильтров.
Рис. 1. Многослойная оптическая структура
Роговица человеческого глаза состоит из нескольких десятков тонких оптически анизотропных коллагеновых пленок. Если человек имеет врожденное или приобретенное повреждение роговицы, он практически слеп, и разработка кератопротезов из многослойных коллагеновых структур также является актуальной задачей на сегодняшний момент.
В общем случае многослойная тонкопленочная оптическая структура имеет вид, изображенный на рис. 1. Она может состоять как из однородных, так и из решетчатых слоев. На структуру падает электромагнитная волна, в общем случае от структуры отражается набор волн и на выходе из структуры также имеется набор волн.
В процессе решения прямой задачи в общем случае необходимо определить амплитудные и энергетические коэффициенты отраженных и прошедших волн, состояния их фаз и поляризаций. В процессе решения обратной задачи необходимо определить геометрические и оптические характеристики слоев структуры и их количество так, чтобы она обладала требуемыми характеристиками.
Основные результаты в теории решения прямых задач для однородных многослойных структур из изотропных материалов были получены М. Борном, Ф. Абеле и развиты в современных работах А.В. Тихонравова, Э.С. Пу-тилина и других. В 1972 г. была опубликована статья Д. Берремана, в которой предложен матричный метод моделирования дифракции поляризованного света на однородных многослойных структурах из анизотропных материалов, сводящий систему уравнений Максвелла к системе из четырех обыкновенных дифференциальных уравнений с постоянными коэффициентами.
Теория моделирования дифракции света на неоднородных периодических структурах разрабатывалась еще лордом Релеєм, и один из существующих методов назван в его честь. Один из точных универсальных методов моделирования дифракции света на наноразмерных решетках и фотонных кристаллах носит название точного метода связанных волн (RCWA), он был разработан в конце XX века и нашел свое отражение в работах многих авторов - Г. Мохарама, В. А. Сойфера и других. Для применения этого метода функции, входящие в состав уравнений Максвелла, необходимо разложить в ряды Фурье, а затем использовать условия равенства на границах раздела тангенциальных компонент электромагнитных полей.
Обратные задачи - задачи синтеза подобных структур - требуют многократного решения прямых задач, так как практически все методы синтеза так или иначе имеют в своей основе алгоритмы условной многомерной оптимизации. Такого рода задачи являются по своей сути некорректными, и поэтому для их решения требуется регуляризация.
В связи с необходимостью проектирования устройств микрооптики весьма актуальной является задача создания адекватных математических
моделей, разработка устойчивых численных методов и алгоритмов решения прямых и обратных задач дифракции поляризованного света на тонкопленочных многослойных покрытиях.
Целью диссертации является реализация вычислительного эксперимента по моделированию дифракции поляризованного света на многослойных тонкопленочных оптических структурах и разработка алгоритмов синтеза таких структур. Работа включает в себя:
-
Создание единообразного, математически корректного подхода для моделирования дифракции плоских электромагнитных волн на слоистых оптических структурах.
-
Разработку устойчивых численных методов и алгоритмов решения прямых и обратных задач, возникающих в результате применения модели, их реализация в виде программного обеспечения.
-
Верификацию редуцированной модели путем сравнения с существующими результатами других авторов и путем спектрофотометрических измерений.
-
Применение редуцированной модели и алгоритмов для решения задачи проектирования многослойной структуры с заданными характеристиками с последующим анализом результатов.
Для достижения указанной цели были поставлены следующие задачи:
-
Решить систему дифференциальных уравнений для тангенциальных компонент электромагнитной волны, распространяющейся вдоль выбранного направления в однородной оптической среде.
-
Используя граничные условия равенства тангенциальных компонент, составить и решить систему линейных алгебраических уравнений для амплитуд компонент электромагнитного поля всей оптической системы.
-
Разработать алгоритм восстановления оптических свойств материала по спектрофотометрическим данным и алгоритм синтеза оптической структуры с заданными свойствами.
-
Реализовать полученные алгоритмы в виде компьютерных программ, осуществить верификацию путем сравнения результатов расчета со спек-трофотометрическими данными.
-
Применить полученные алгоритмы для решения задачи проектирования кератопротеза человеческого глаза на основе тонких коллагеновых пленок.
Методы исследований
Метод решения систем дифференциальных уравнений с постоянными коэффициентами позволяет записать решение системы обыкновенных дифференциальных уравнений в виде матричной экспоненты, поиск которой возможен численно устойчивыми методами.
Метод вращений Якоби позволяет создавать численно устойчивые реализации алгоритма Якоби поиска собственных векторов и собственных значений комплекснозначных матриц.
Метод LUразложения позволяет устойчиво решать системы линейных уравнений, возникающие при решении поставленных задач.
Метод Галеркина редукции систем дифференциальных уравнений в частных производных к системам обыкновенных дифференциальных уравнений.
Метод деформируемого многогранника Нелдера-Мида минимизации функционала применяется при решении обратных задач восстановления оптических свойств материала по спектрофотометрическим данным и при решении зада синтеза оптических структур.
Устойчивый метод Тихоновской регуляризации используется при решении обратных задач восстановления оптических свойств материала по спектрофотометрическим данным.
Научную новизну работы составляют следующие факты
-
Математически обоснована редуцированная модель дифракции нормальных волн на многослойных структурах. В частных случаях она совпадает с существующими моделями.
-
Модель включает в себя:
процедуру редукции уравнений Максвелла к системе обыкновенных дифференциальных уравнений 4x4 для плоско - параллельных однородных слоев и систему из 4 наборов из 2N+1 уравнений для дифракционной решетки
с учетом граничных условий задача сводится к системе линейных алгебраических уравнений
3. Модель верифицируется различными способами:
В частных случаях возможна теоретическая верификация
Модель верифицируется путем сравнения результатов численных расчетов с результатами других авторов
Модель верифицируется путем проведения серий спектрофотометри
ческих измерений
4. Предложенная модель позволяет унифицировать методику решения задач, связанных с моделированием прохождения света через плоскопараллельные системы.
Практическая значимость результатов
Полученные теоретические и практически результаты можно применять:
при решении задач восстановления неизвестных оптических свойств различных анизотропных материалов (диэлектрической проницаемости) по спектрофотометрическим данным
при решении задач проектирования многослойных оптических структур: поляризаторов, светофильтров, светоделителей, просветляющих и отражающих покрытий, жидкокристаллических дисплеев, устройств формирования трехмерного изображения
с использованием полученных результатов возможно создание керато-протеза роговицы человеческого глаза
Обоснованность и достоверность полученных результатов
Обоснованность полученных результатов следует из того, что на всех этапах аналитического и численного решения задач использовались строгие и проверенные методы: метод вращений Якоби, метод многомерной оптимизации Нелдера-Мида, метод Тихоновской регуляризации.
Достоверность результатов подтверждается сравнением результатов тестовых расчетов, во-первых, с результатами расчетов с использованием моделей других авторов [1-4], а, во-вторых, путем спектрофотометрических измерений при помощи спектрофотометра Lambda 950.
Апробация результатов. Основные результаты диссертационной работы докладывались на следующих конференциях и семинарах: Выступления на конференциях
Всероссийская конференция по проблемам математики, информатики, физики и химии РУДН 2008 г., 2009 г. и 2010 г.
Международный форум по нанотехнологиям. Москва:- «Роснано», 2008 г. и 2010 г.
Математическое моделирование и краевые задачи, Самара 2009 г.
Международная конференция «Математическое моделирование и вычислительная физика», июль 2009, г. Дубна.
52 научная конференция МФТИ «Современные проблемы фундаментальных и прикладных наук», ноябрь 2009 г. Долгопрудный. Выступления на семинарах
-
Общеуниверситетский научный семинар по нанотехнологии, 11 октября 2009 г., РУДН, Москва.
-
Общемосковский научный семинар "Интегральная оптоэлектроника. Физическая экология. Математическое моделирование", 15 сентября 2010, МНТОРЭС, Москва.
-
Семинар по вычислительной физике ЛИТ ОИЯИ, 23 декабря 2010 г., ОИ-ЯИ, Дубна.
Личный вклад соискателя. Исследованы матричные методы моделирования дифракции поляризованного света на анизотропных структурах, указаны вычислительные сложности и предложены способы их преодоления. Предложена собственная модель взаимодействия поляризованного света с многослойными наноразмерными оптическими системами. Модель обобщена для описания дифракции поляризованного света на периодических структурах. В рамках модели разработаны вычислительные алгоритмы.
Предложен метод решения задачи восстановления оптических свойств анизотропных материалов по спектрофотометрическим данным. Исследованы результаты других авторов в данной тематике и предложен собственный устойчивый алгоритм восстановления.
Предложен метод решения задачи синтеза многослойной оптической структуры с заданными спектральными характеристиками. В качестве примера решена задача синтеза кератопротеза.
Опубликованные результаты получены либо лично соискателем (предложенная математическая модель, алгоритмы расчета в рамках этой модели, её верификация, модель роговицы человеческого глаза), либо при его непосредственном участии.
Публикации. По результатам диссертационных исследований опубликованы 10 статей в специализированных журналах, в сборниках трудов всероссийских и международных конференций. Результаты, выносимые на защиту, изложены в трех работах, опубликованных в изданиях из списка ВАК.
Структура н объем диссертации. Диссертационная работа состоит из введения, трех глав, заключения, списка литературы из 116 наименований и 38 рисунков. Содержание работы изложено на 131 странице.