Электронная библиотека диссертаций и авторефератов России
dslib.net
Библиотека диссертаций
Навигация
Каталог диссертаций России
Англоязычные диссертации
Диссертации бесплатно
Предстоящие защиты
Рецензии на автореферат
Отчисления авторам
Мой кабинет
Заказы: забрать, оплатить
Мой личный счет
Мой профиль
Мой авторский профиль
Подписки на рассылки



расширенный поиск

Математическое моделирование сложных технологических процессов доменного производства методами нелинейной динамики Голубев Олег Викторович

Математическое моделирование сложных технологических процессов доменного производства методами нелинейной динамики
<
Математическое моделирование сложных технологических процессов доменного производства методами нелинейной динамики Математическое моделирование сложных технологических процессов доменного производства методами нелинейной динамики Математическое моделирование сложных технологических процессов доменного производства методами нелинейной динамики Математическое моделирование сложных технологических процессов доменного производства методами нелинейной динамики Математическое моделирование сложных технологических процессов доменного производства методами нелинейной динамики
>

Данный автореферат диссертации должен поступить в библиотеки в ближайшее время
Уведомить о поступлении

Диссертация - 480 руб., доставка 10 минут, круглосуточно, без выходных и праздников

Автореферат - 240 руб., доставка 1-3 часа, с 10-19 (Московское время), кроме воскресенья

Голубев Олег Викторович. Математическое моделирование сложных технологических процессов доменного производства методами нелинейной динамики : диссертация ... кандидата технических наук : 05.13.18.- Липецк, 2003.- 158 с.: ил. РГБ ОД, 61 03-5/3554-4

Содержание к диссертации

Введение

Глава 1. Доменный процесс выплавки чугуна и моделирование сложных термодинамических систем 10

1.1. Краткое описание доменного процесса 10

1.2. Неравновесная термодинамика и методы нелинейной динамики 22

1.3. Численные методы решения дифференциальных уравнений 40

1.4. Исследование точности численного решения динамических систем 45

1.5. Иерархия упрощенных моделей 50

Выводы 52

Глава 2. Моделирование процессов нагрева и охлаждения насадки доменного воздухонагревателя 55

2.1. Воздухонагреватели. Типы и основные характеристики 55

2.2. Модель теплового состояния насадки воздухонагревателя 58

2.3. Физическая модель воздухонагревателя с учетом суперпозиции действующих сил 63

2.4. Компьютерное моделирование процесса нагрева и охлаждения насадки воздухонагревателя 72

2.5. Рассмотрение возможных способов нагрева и охлаждения насадки 76

2.6. Влияние шага дискретизации в математической модели насадки воздухонагревателя 82 Выводы 86

Глава 3. Моделирование процесса косвенного восстановления железа в доменной печи с использованием аппарата нелинейной динамики 88

3.1. Модель косвенного восстановления железа в доменной печи

3.2. Исследование модели «Доменного Брюсселятора» 92

3.3. Влияние шага дискретизации в математической модели косвенного восстановления железа 106

3.4. Корреляционная размерность и ее определение в модели «Доменного Брюсселятора» 112

3.5. Исследование временных рядов данных доменной печи 116

Выводы 131

Глава 4. Программные комплексы и практическое применение разработанных моделей для анализа процессов доменного производства чугуна 133

4.1. Разработка программных комплексов 133

4.2. Технологические параметры пульсирующего вдувания в доменную печь восстановительных газов 138

4.3. Проверка адекватности физической модели нагрева и охлаждения насадки воздухонагревателя реальным данным 143

Выводы 145

Заключение 146

Библиографический список использованной литературы

Численные методы решения дифференциальных уравнений

Л. Грюнером в 1872 г. был сформулирован один из основных принципов теории доменного процесса, согласно которому идеальный ход доменной печи возможен при восстановлении железной руды только непрямым способом, без потребления твердого углерода. Для того, чтобы приблизиться к идеальному ходу, необходимо, чтобы восстановительный процесс совершался при относительно невысоких температурах, чтобы двуокись углерода не реагировала с твердым углеродом, образовывая СО. Принцип Грюнера вызвал длительную дискуссию среди теоретиков и практиков доменного процесса, критикующих положения об «идеальном» ходе доменной плавки и необходимости для его осуществления максимально возможной степени косвенного восстановления железа.

Профессор А.Н. Рамм в [1] подвел резюме распространенным возражениям против принципа Грюнера, указав, в частности, что «содержание принципа Грюнера заключается только в том, что расход кокса в доменной плавке понижается по мере развития непрямого восстановления и что минимальный расход его соответствует максимально возможному в данных условиях плавки Восстановление железа по высоте доменной печи: а-Магнитогорский металлургический комбинат; б - «Запорожсталь» развитию непрямого восстановления. Так как развитие непрямого восстановления - только один из многих факторов, влияющих на расход кокса, то указанное положение предполагает, естественно, постоянство всех других, кроме Vd, условий плавки (состава шихты и выплавляемого чугуна, параметров дутья и т.д.)» Создать модель доменного процесса, в полной мере учитывающую все его свойства, весьма затруднительно [2], поскольку при этом необходимо учитывать все многообразие реальной доменной плавки. При построении моделей приходится делать многочисленные упрощения, вводить уравнения, получаемые эмпирическим путем, и подгоночные параметры, что значительным образом сказывается на области их применимости. Поэтому более точны и эффективны модели, описывающие определенную часть доменного процесса, что дает возможность не учитывать различные несущественные в рассматриваемой модели свойства процесса.

Наиболее распространенными моделями доменного процесса являются балансовые (модели А.Н. Рамма [1], Риста - Писи - Давенпорта [11] и др.). Они устанавливают зависимости между входными и выходными параметрами на основе комплексного анализа изучаемых процессов с точки зрения балансов массы и энергии. Одной из самых известных балансовых моделей является модель А.Н. Рамма. В ней учитываются известные закономерности протекания химических реакций и считаются определенными схемы поведения каждого вещества во время доменной плавки. Исходными данными в модели являются: химический состав и температура загружаемой шихты; химический состав и энтальпия чугуна; основность и энтальпия шлака; температура дутья и содержание в нем кислорода и влаги; удельный расход вдуваемых в горн топливных добавок и восстановительных газов; внешние потери тепла; температура колошника в базовом режиме; степень прямого восстановления и другая информация. Расчет доменного процесса по модели Рамма состоит в следующем: вычисляется удельный расход флюса, позволяющий обеспечить требую основность шлака при заданном химическом составе шихты и чугуна; рассчитывается степень прямого восстановления железа по эмпирической формуле, учитывающей расход вдуваемого топлива и его химический состав, а также температуру дутья и содержание в нем кислорода; определяется температура колошникового газа по эмпирической формуле, учитывающей параметры комбинированного дутья.

Полученной информации оказывается достаточно для того, чтобы получить замкнутую систему уравнений, с помощью которой можно рассчитать удельный расход дутья, кокса и флюса, удельный выход шлака, время пребывания материалов в доменной печи, количество сгораемого кокса на фурмах, химический состав колошникового газа и другие характеристики процесса.

Недостаток данной модели заключается в использовании эмпирических формул, выражающих зависимость степени прямого восстановления Fe и температуры колошникового газа от параметров процесса, полученных для сравнительно узкой области их изменения. Более того, балансовые модели доменного процесса содержат около 20-30 дифференциальных уравнений и являются чрезвычайно громоздкими. При этом работы по вычислительной математике (например [12]) указывают, что решение систем, имеющих более 6-7 дифференциальных уравнений, приводят к искажениям результатов даже при малых шагах дискретизации численных методов. В связи с этим является разумным применять для описания процессов, протекающих в доменной печи, нелинейные динамические модели, имеющие малый порядок и опирающиеся на базовые характеристики процесса (п. 1.5). Построение и исследование феноменологических моделей различных металлургических процессов производится в работах Б.Н. Окорокова, С.А. Дубровского, В.П. Цымбала и др. [13 - 24].

Большинство существующих моделей не принимают во внимание многочисленные обратные связи между параметрами доменного процесса. Попытки построения моделей с их учетом сделаны в работах А.Б. Шура [25, 26], В.Н. Андронова [3, 4]. В них исследуются различные процессы доменной плавки с помощью метода структурных схем. Однако, в данных моделях обратные связи берутся линейными, а параметры - фиксированными. Попытки создания моде 17 лей с физико-химическими обратными связями (как положительными, так и отрицательными) приводятся в работах С.А. Дубровского [14, 15, 18, 19, 22].

Многочисленность нелинейных связей между параметрами, описывающими доменный процесс, их сложная взаимозависимость, а также потребность учета большого числа начальных условий и входных переменных доменной плавки приводит исследователей к выводу о необходимости использования методов нелинейной динамики для моделирования высокотемпературных физико-химических процессов в доменной печи. Неравновесное состояние химических параметров доменного процесса обусловлено высокими скоростями реакций и условиями их протекания, что приводит к необходимости применения аппарата неравновесной термодинамики как для описания явлений в домне, так и для термодинамических процессов, проходящих в воздухонагревателях доменной печи.

Моделирование процесса работы доменных воздухонагревателей. Рассмотрим устройство, режимы и основные показатели, определяющие работу доменного воздухонагревателя. Воздухонагреватель используется для нагрева воздуха, который вдувается в горн доменной печи с целью увеличения температуры и интенсивности горения кокса, что ведет к значительной экономии топлива. Воздухонагреватели наряду с доменной печью являются наиболее крупными (диаметр их цилиндрической части достигает около 10 м., а высота -60 м), сложными и ресурсоемкими устройствами доменного цеха [27-30] (рис. 1.3). Обычно они располагаются блоками по четыре воздухонагревателя на одну доменную печь [10, 31].

Модель теплового состояния насадки воздухонагревателя

При изучении сложных систем исследователи зачастую пытались формировать их по частям, объединяя независимо созданные модели. Однако в таком случае обычно получались трудно интерпретируемые результаты. «Многократное усложнение моделей, ставшее возможным благодаря прогрессу вычислительной техники, дало гораздо более скромные, чем ожидалось, результаты» [77, с. 19]. Современный подход заключается в выделении основных, ключевых процессов явления, после чего строится еще более простая модель с меньшей областью применимости и учитывающая меньшее количество факторов. Упрощение модели происходит до тех пор, пока ее поведение не становится понятным. Поэтому считается [66], что основным достижением и целью исследований при решении сложных задач является построение иерархии упрощенных моделей, создание которых идет как в физике, так и в ряде областей химии, математической экономике, биологии. К сожалению, данный подход практически не применялся при создании моделей технологических процессов в металлургии. При этом можно выделить следующие сложившиеся направления, применяющиеся при моделировании реальных процессов [14]:

Аппроксимационные модели, которые строятся из условия максимальной близости результатов работы модели и оригинала в смысле заранее заданного критерия.

Модели структурного соответствия, которые отражают соответствие оригиналу в рамках отображения структурных особенностей изменения выходных сигналов и состояния.

Феноменологические модели, которые по исходным предпосылкам декларируют сущность явления, не претендуя на его точное воспроизведение.

Феноменологические модели, несмотря на их возможную низкую прогностическую способность, дают возможность анализировать феномен явления во всадего многообразии, включая «запредельные» состояния и возможные аномальные явления в поведении анализируемого процесса. Таким образом, упрощенные (феноменологические) модели могут являться базовыми для создания иерархии упрощенных моделей.

Подобное разделение моделей на математические (аналитические), физические (эмпирические) и концептуальные (феноменологические) приводит П. Эйкхофф в [95]. Тип модели зависит от того, какая сторона объекта наиболее существенна, от использующихся при построении модели методов и от полноты и достоверности имеющейся информации.

В [96] А.А. Красовским дано такое определение феноменологических моделей: «Феноменологическими математическими моделями обычно называют упрощенные модели ... отражающие в количественном отношении лишь самые важные закономерности.»

Таким образом, представляется, что феноменологические модели, связывая наиболее общие характеристики объектов, позволяют вскрывать скрытые, слабо изученные явления, которые ранее декларировать лишь как наблюдаемые, но математически не объясненные. Более того, класс этих моделей может генерировать ситуации, которые наравне с ранее известными, не наблюдались и не анализировались, как в практических, так и в теоретических исследованиях.

Феноменологические модели должны быть просты в своей исходной постановке, понятны по сути принятых ограничений, давая описание существа проблемы, «очищенной» от побочных, второстепенных эффектов, изучение которых производится на последующих шагах исследования с помощью аппрок-симационных моделей и моделей структурного соответствия.

Построению и теоретическому исследованию феноменологических моделей металлургического производства посвящено сравнительно мало публикаций: [13, 24, 25]. Созданию феноменологических моделей различных процессов металлургического производства, основанных на теории самоорганизации и нелинейной динамики, посвящены работы С.А. Дубровского [14,16-22,97].

Поскольку математическое описание феноменологических моделей основано на построении систем дифференциальных уравнений, решение которых производится численными методами, то перед исследователями остро встает проблема нарушения вида движения системы при неверном выборе шага дискретизации (п. 1.4.).

Поскольку основными агрегатами, задействованными в доменном производстве, являются воздухонагреватель и доменная печь, во 2 главе строится и исследуется феноменологическая модель воздухонагревателя с учетом основных действующих в насадке физических сил, а в 3 главе - модель автоколебаний концентрации железа в зоне косвенного восстановления доменной печи.

Влияние шага дискретизации в математической модели косвенного восстановления железа

Во многих работах по доменному процессу упоминаются эффекты самоорганизации как в тепловом состоянии, так и в ходе доменной печи [106 - 109]. Однако, при этом в них не делаются попытки их объяснения с применением аппарата нелинейной динамики. Анализ нелинейных эффектов наиболее удобно осуществлять на феноменологических моделях [14], которые не ставят перед собой цель устанавливать точные соответствия значений переменных модели и оригинала, а объясняют общее поведение системы на основе динамических нелинейных зависимостей малой размерности. Как правило, доменный процесс рассматривается как объект без внутренних обратных связей, но на самом деле в нем имеют место сложные внутренние взаимосвязи перекрестного характера. Пример такого подхода отражен, например, в работах [25, 26], где, в частности, отмечается наличие внутренних технологических обратных связей между удельным расходом кокса и степенью прямого восстановления железа, а в [110] отмечается, что эти связи существенно нелинейны.

Ниже рассмотрим процесс косвенного восстановления железа в доменной печи, обсуждая сосредоточенную, максимально упрощенную динамическую систему. Данная система представляет собой попытку изучить феномен концентрационных колебаний химических соединений в зоне косвенного восстановления железа в доменной печи за счет процесса автокатализа железа.

В данной феноменологической модели примем следующие допущения: 1) В зоне косвенного восстановления в кусках агломерата одновременно с железом присутствуют его оксиды [1,2, 4]. 2) Железо является катализатором реакции восстановления FeO. Возможность протекания этой реакции подтверждена расчетом энергии Гиббса. 3) Процесс доменной плавки идет стабильно, следовательно, в каждом горизонте доменной печи температура постоянна. Постоянное изменение (увеличение) температуры кусков агломерата можно учесть, однако это резко усложнит форму модели. Кроме того, скорость изменения температуры слоя агломерата ниже скорости химических превращений на куске агломерата. Используя второе допущение, запишем в стандартной форме записи автокаталитическую реакцию: FeO + Н2 + aFe -+ (1 +a)Fe + Н20; FeO + СО + aFe - (1 +a)Fe + C02. Металлическое железо в шихте начинает появляться с температуры около 700К. При его наличии возможно протекание следующих реакций: Fe304 +Fe- 4FeO; FeO + H2 + aFe - (1+a)Fe + H20; FeO + CO + aFe - (J+a)Fe + C02. Железо и Fe304 приходят в зону реакции сверху, а Н2 и СО - снизу печи. Их концентрации соответственно обозначим: для поступающего извне железа -A, Fe304 - В, концентрации (парциальные давления) Н2 и СО объединим и обозначим D. Эти параметры будут являться внешними. Параметр а носит физический смысл степени катализа; чем выше его значение, тем больше атомов свободного железа требуется для взаимодействия с молекулой оксида железа для образования еще одного атома железа. Если принять а=2, а концентрации Fe - X, a FeO - Y, то их изменение по закону действующих масс описывается следующей системой: dX/dt = A-BX + DX2Y X; dY/dt = BX-DX2Y. Настоящая система приведена для последующего анализа к безразмерному виду.

При рассмотрении кинетических процессов важным моментом является структурообразование превращения веществ, в этой связи весьма полезным является построение структурных схем, отражающих динамизм той или иной реакции. Для системы дифференциальных уравнений (3.1) эта схема представлена нарис. 3.1.

Схема имеет три входа: Л, BuD, два выхода: X, Г, три контура обратных связей (в том числе и нелинейных), а также два оператора интегрирования величин dX/dt и dY/dt по t. Схема отражает алгоритм моделирования системы дифференциальных уравнений (3.1); значения переменных X и Уна предыдущем вычислительном шаге берутся за основу для их расчета на следующем шаге, вычисляются значения dX/dt и dY/dt и производится операция их численного интегрирования.

Данная система является обобщением модели Брюсселятора, поскольку в уравнения добавляется параметр D. При D = 1 мы приходим к классической его форме. Модель Брюсселятора была предложена, а затем тщательно исследовалась лауреатом Нобелевской премии по химии Ильей Пригожиным [46 -49] и рассматривается в химической кинетике, как яркий пример автокаталитической реакции со сложными видами движений, включая колебательные и стохастические [52]. Изучение различных аспектов процесса концентрационных автоколебаний в физико-химических системах рассматривается также в [111 -113], в системах другой природы - в [114], моделирование процессов в гетерогенном катализе - в [ 115].

Технологические параметры пульсирующего вдувания в доменную печь восстановительных газов

Целью исследования временных рядов данных о температуре по периметру доменной печи и перепадах давления в верхней и нижней части печи являлась попытка связать процесс концентрационных автоколебаний, проходящий в кусках агломерата в зоне косвенного восстановления с основными физическими показателями, снимаемыми приборами с доменной печи. Используемые методы математической статистики см. в [118 - 120].

Исследовались временные ряды, сформированные на основе данных о перепаде давления в верхней и нижней частях доменной печи (АРв АР„), а также о температуре по периметру печи на уровне одного метра ниже уровня засыпки материалов (tmpj,... , tmpj). Данные собирались в период с 9 июня 2001 г. по 17 декабря 2001 г. три раза в сутки (рис. 3.16-3.22). На основе полученных данных также были сформированы временные ряды суммарного перепада давления в доменной печи (АРобщ) и средней температуры по периметру печи (tnepcp) (рис. 3.16, 3.23).

Был произведен расчет коэффициентов корреляции и детерминации между временными рядами перепада давления в верхней и нижней частях доменной печи АРв, АРН и между временными рядами температур tnepli... , tmpj.

Коэффициент корреляции г в_ и» -0.76, а коэффициент детерминации ДРВ, дяк = 0.57, что говорит о существующей отрицательной линейной связи между перепадами давления внизу и вверху доменной печи. Данный факт также подтверждается оценкой суммарного перепада давления газов в доменной печи, находящегося на уровне / атм. Таким образом, чем выше перепад давления зарегистрирован в верхней части доменной печи, тем ниже он в нижней части и наоборот.

Коэффициенты корреляции и детерминации для временных рядов температур измеренных по периметру доменной печи были сведены соответственно в корреляционную матрицу R и матрицу коэффициентов детерминации D:

Поскольку измерения температуры проводились по периметру горизонтального сечения доменной печи (рис. 3.15), то логичным выглядит предположение о наибольшей связи между температурами в соседних контролируемых точках.

В результате исследования коэффициентов корреляции и детерминации имеющихся температурных временных рядов были сделаны следующие выводы: 1) Чем дальше расположены измерительные пункты, тем, в среднем, меньше корреляция между временными рядами, построенными на основе полученной информации. Это согласуется с общими соображениями о взаимосвязях между элементами распределенных в пространстве объектах, поскольку, чем больше расстояние между областями исследуемого объекта, тем зачастую меньше связей между их динамически изменяющимися параметрами. Таким образом, для исследуемых временных рядов справедливо следующее общее эмпирическое соотношение:

Расположение измерительных приборов по горизонтальному сечению доменной печи и значения коэффициентов корреляции между ними причем при усредненных коэффициентах корреляции R индексы должны п э [1, б]; если индекс т 6, то т = т — 6, а если индекс т 1,тот = т + 6. Расписав выражения для усредненных коэффициентов корреляции, имеем, например:

Числовые выражения для усредненных коэффициентов корреляции равны соответственно Rnn+l = 0,72; Rnn+2 = 0,56; Rn „+3 = 0,50, что подтверждает предположение об уменьшении связи между временными рядами с увеличением расстояния между точками контроля. 2) Выявлено относительно малое значение коэффициентов корреляции между временным рядом построенным на основе данных четвертого измерительного прибора и остальными временными рядами, т.е., другими словами, усредненный коэффициент корреляции R4m Rnm, где п # 4, а т = [1, 6]. Действительно R4/n - 0,54, тогда как значения других усредненных коэффициентов корреляции находится в диапазоне от 0,65 до 0,75. Таким образом, необходимо обратить особое внимание на область четвертого измерительного прибора, которая, по всей видимости, имеет отличия в динамике процесса от остальных областей контроля.

3) Отмечается несовершенство автоматизированной системы регулирования перепада давления в доменной печи, поскольку его значения отслеживает автоматика, в задачу которой входит поддерживать на постоянном уровне общий перепад давления, оперативно выравнивая отклонения от его регламентированного значения, а значение коэффициента детерминации между временными рядами перепада давления вверху и внизу доменной печи мало ( 4рв, АР» = 0.57).

С целью вскрытия закономерностей поведения исследуемых характеристик доменной печи в закорреляционной области был произведен расчет корреляционной размерности D [47, 116, 117, 121]. Для соответствующих временных рядов она равна:

DkPe = 6.815 при п - 8; DbpH = 5.789 при п = 8\ &Робщ = 2.084 при п = 8; Dtmpj = 3.846 при п-8\ Dtmpj = 3.508 при п = 8; Dtmpj = 3.729 при л = 8; Dtnepj = 3.114 при п = 8; Dtmpj = 3.885 при и = 5; Dtmpj 3.576 при я = 5; Dtnepj = 3.525 при я = 8;

Графики зависимости корреляционной размерности D от п для исследуемых временных рядов показаны на рис. 3.24, 3.25. Графики корреляционной размерности временных рядов в динамике показаны на рис. 3.26, 3.27. Вычисление корреляционных размерностей производилось с использованием разработанной на языках программирования Turbo Pascal 7.0 и Delphi программы.

Анализ поведение графиков корреляционной размерности D(n) временных рядов показывает, что:

1) поведение перепадов давления в верхней и нижней части доменной печи с течением времени зависит от многих переменных процесса (порядка 6-7 переменных). Вместе с тем, график D(n) общего перепада давления в печи имеет совершенно иное поведение с малым значением корреляционной размерности, что говорит о необходимости объединения в рассмотрении верхней и нижней части доменной печи и выделении 2-3 основных переменных, определяющих динамику доменной плавки. В качестве основных характеристик можно выделить степень прямого восстановления железа и последовательности загрузки шихтовых материалов и топлива в печь.

2) Выход на плато значений корреляционной размерности D(n) для температурных временных рядов говорит о существовании 3-4 переменных, определяющих температуру газов в верхней части доменной печи. Поскольку в этой области может сказываться влияние внешних причин, оказывающих влияние на температуру, то можно, как и в случае анализа перепадов давлений, выделить 2-3 основные переменные, определяющих работу доменной печи.

3) Поведение температуры в четвертой измерительной точке нестандартно, поскольку корреляционная размерность D(n) для нее минимальна относительно корреляционных размерностей остальных температурных временных рядов, а также график поведения корреляционной размерности в динамике ряда №4 значительно отличается от других графиков. Данный факт можно объяснить неисправностью датчика в измерительном пункте №4.

На рис. 3.28 показаны автокорреляционные функции временных рядов перепада давления и температуры, на рис. 3.29 - взаимокорреляционные функции этих временных рядов, на рис. 3.30, 3.31 - соответственно, их спектральные плотности и кросс-спектры. Вычисления и построение графиков было произведено с использованием специализированного математического пакета прикладных программ STATISTICA 5.0.

Следует обратить внимание на то, что затухание автокорреляционных функций временных рядов происходит медленно, а также, что взаимокорреляционная функция временных рядов АРе и tmpj затухает в значительной степени только в направлении положительного сдвига временного ряда tnepj.

Похожие диссертации на Математическое моделирование сложных технологических процессов доменного производства методами нелинейной динамики