Электронная библиотека диссертаций и авторефератов России
dslib.net
Библиотека диссертаций
Навигация
Каталог диссертаций России
Англоязычные диссертации
Диссертации бесплатно
Предстоящие защиты
Рецензии на автореферат
Отчисления авторам
Мой кабинет
Заказы: забрать, оплатить
Мой личный счет
Мой профиль
Мой авторский профиль
Подписки на рассылки



расширенный поиск

Математическое моделирование электроконвекции в мембранных системах Узденова, Аминат Магометовна

Диссертация, - 480 руб., доставка 1-3 часа, с 10-19 (Московское время), кроме воскресенья

Автореферат - бесплатно, доставка 10 минут, круглосуточно, без выходных и праздников

Узденова, Аминат Магометовна. Математическое моделирование электроконвекции в мембранных системах : диссертация ... кандидата физико-математических наук : 05.13.18 / Узденова Аминат Магометовна; [Место защиты: Кубан. гос. ун-т].- Краснодар, 2012.- 144 с.: ил. РГБ ОД, 61 12-1/733

Введение к работе

Актуальность темы. Математическое моделирование электроконвекции привлекало внимание многих ученых. В работах по электроконвекции в мембранных системах выделяют два её типа: объемную электроконвекцию, обусловленную действием электрического поля на пространственный заряд в квазиэлектронейтральном растворе, и электроосмос, связанный с существованием на границе фаз двойного электрического слоя. В настоящее время доказано отсутствие объемной электроконвекции в реальных условиях. В зависимости от структуры двойного электрического слоя для электроосмотического скольжения выделяют два фундаментально различных режима: электроосмос первого и второго родов.

Теория электроосмоса первого и второго родов была разработана С.С. Духиным, Б.В. Дерягиным, Н.А. Мищук, Э. Жолковским, Э. Стодом, М. Воротынцевым др. В работах И. Рубинштейна, Б. Зальцмана, И. Лерман и др. были проведены теоретические и экспериментальные исследования электроконвекции. В указанных выше работах заложены основы математического моделирования и теории электроконвекции в мембранных системах. Однако в них ограничиваются рассмотрением сравнительно простых математических моделей при различных упрощающих предположениях:

1) предположение об электронейтральности раствора,

2) стационарности электроконвекции,

3) принятие концентрации постоянной на границе с мембраной,

4) рассматривалась лишь непроточная ячейка и др.

Таким образом, тему диссертации, посвященную построению и исследованию математических моделей электроконвекции в мембранных системах, свободных от указанных выше ограничений, разработке эффективных алгоритмов численного и асимптотического анализа, установлению основных закономерностей электроконвекции, следует признать актуальной.

Актуальность темы исследования подтверждается также поддержкой, оказанной работе Федеральным Агентством по образованию и науке РФ в рамках темы 1.4.08 («Методы регулярного представления сингулярно возмущенных уравнений и их приложения. Метод модулирующих функций в обратной задаче теории фильтрации» (направление фундаментальных научных исследований «Рациональное природопользование») и гранта РФФИ-Юг (№ 09-08-96529 «Модифицирование поверхности ионообменных мембран с использованием углеродных нанотрубок с целью совершенствования процессов электродиализного обессоливания и концентрирования»).

Объектом исследования являются закономерности электроконвекции в мембранных системах.

Предметом исследования являются математические модели электроконвекции в мембранных системах.

Цель исследования. Разработка математических моделей электроконвекции в мембранных системах, асимптотических и численных методов их исследования.

Цель исследования предопределила следующие задачи исследования:

  1. Построение математических моделей электроконвекции в мембранных системах.

  2. Построение эффективных численных и асимптотических методов решения.

  3. Разработка проблемно-ориентированных программ для проведения вычислительных экспериментов.

  4. Установление основных закономерностей электроконвекции в мембранных системах.

Научная новизна:

  1. Разработана иерархическая система новых моделей, адекватно описывающих электроконвекцию в мембранной системе в потенциостатическом и гальваностатическом режимах: общая модель, модель в приближении соленоидальности поля плотности тока, модель в приближении закона Ома. Эти модели разработаны, как для гладких мембран, так и мембран с выступами и кавернами.

  2. Предложены новые алгоритмы и методы численного и асимптотического решения краевой задачи, отвечающей модели в приближении закона Ома, особенностью которых является оригинальное сочетание численных и асимптотических методов с последовательным уточнением области применимости асимптотических решений. Даны асимптотические оценки электрического и концентрационного полей.

  3. Впервые установлены основные закономерности электроконвекции в проточных мембранных системах: структура и динамика электрического и концентрационного полей, динамика возникновения и развития электроконвективных вихрей, влияние геометрической неоднородности поверхности мембраны на электроконвекцию.

Научная и практическая значимость

  1. Предложенные в диссертации уравнение для плотности электрического тока, формула для напряженности электрического поля, модели в приближении соленоидальности плотности тока и закона Ома могут быть использованы для разработки математических моделей в других задачах, описывающих перенос в мембранных, нано- и микрофлюидных системах.

  2. Методы асимптотического и численного решения краевых задач, предложенные в диссертации, могут быть применены при решении краевых задач для системы квазилинейных уравнений математической физики.

  3. Установленные в диссертации основные закономерности электроконвекции могут быть использованы научно-исследовательскими группами, проектными организациями для повышения эффективности электродиализных аппаратов водоподготовки, при разработке новых конструкций этих аппаратов и нано- и микрофлюидных устройств.

Основные положения, выносимые на защиту:

  1. Иерархическая система математических моделей электроконвекции в мембранных системах для потенциостатического и гальваностатического режимов, выведенная на основе предложенного в диссертации метода моделирования процессов переноса в мембранных системах.

  2. Алгоритмы численного и асимптотического решения краевых задач, соответствующих математическим моделям. Особенностью предлагаемых методов является оригинальное сочетание численных и асимптотических методов, причем в ходе решения последовательно уточняются области применимости асимптотических решений. Приближенные аналитические формулы для расчета электрохимических полей.

  3. Новое уравнение для плотности электрического тока, устанавливающее соответствие между плотностью тока, напряженностью электрического поля и концентрацией электролита. Формула для напряженности электрического поля, устанавливающая зависимость напряженности электрического поля от плотности тока, градиента концентрацией электролита и скорости конвективного потока электролита.

  4. Основные закономерности электроконвекции в мембранных системах, а именно структура распределения электрохимических и гидродинамических полей по ширине и длине канала обессоливания, влияние на перенос ионов соли электроконвекции и геометрической неоднородности поверхности мембран при интенсивных токовых режимах, критическая (пороговая) кривая возникновения электроконвекции в координатах «скорость вынужденного течения раствора/падение потенциала», установленные с помощью комплексного исследования с использованием математических моделей и вычислительного эксперимента.

  5. Комплекс проблемно-ориентированных программ для проведения вычислительных экспериментов по исследованию электроконвекции в канале обессоливания электродиализного аппарата с учетом геометрической неоднородности поверхности мембран и проведение вычислительных экспериментов.

Внедрение. Результаты диссертационного исследования использованы в работе инновационного технологического Центра «Кубань-Юг» при проектировании новых систем водоподготовки, в учебном процессе ФГБОУ ВПО «Карачаево-Черкесский государственный университет им. У.Д. Алиева».

Обоснованность и достоверность результатов, полученных в диссертации, обеспечивается выбором адекватных моделей, применением строгих математических методов, сравнением с результатами других авторов и с литературными экспериментальными данными, в тех случаях, когда это возможно.

Личный вклад автора. Основные результаты работы получены лично автором: построена иерархическая система математических моделей процесса электроконвекции; построены алгоритмы численного и асимптотического решения краевых задач соответствующих математических моделей; разработан комплекс проблемно-ориентированных программ для проведения вычислительных экспериментов по моделированию массопереноса в канале обессоливания электродиализного аппарата с учетом электроконвекции и геометрической неоднородности поверхности мембран; выявлены основные закономерности электроконвекции в канале обессоливания электродиализного аппарата для бинарного электролита.

Апробация работы. Результаты диссертации были доложены:

  1. на 4-х Международных конференциях: «Ion transport in organic and inorganic membranes» (г. Туапсе, 2008 – 2011 гг.) и 2-х Всероссийских конференциях: «VI-VII Всероссийские конференции «Современное состояние и приоритеты развития фундаментальных наук в регионах»» (г. Анапа, 2009, 2010 гг.);

  2. на научных семинарах кафедры математического анализа КЧГУ (2008, 2009, 2010 гг.), прикладной математики КубГУ (2009, 2010 г.), кафедры физической химии КубГУ (2011 г.);

  3. на научных конференциях студентов и аспирантов КЧГУ (г. Карачаевск, 2009, 2010, 2011 гг.) и КубГУ (г. Краснодар, 2009, 2010 гг.).

Публикации. По материалам диссертации опубликовано 18 печатных работ, из них 1 монография, 8 статей, 9 тезисов докладов, в том числе 5 статей в журналах, рекомендованных ВАК для опубликования основных результатов докторских и кандидатских диссертаций.

Структура и объём диссертации. Диссертация состоит из введения, четырех глав, заключения, списка литературы (164 наим.), двух приложений. Работа изложена на 144 стр., в том числе содержит 33 рисунка, 1 таблицу.

Похожие диссертации на Математическое моделирование электроконвекции в мембранных системах