Введение к работе
Актуальность темы исследования
В настоящее время инфекционные болезни остаются одной из ведущих причин преждевременной смерти людей на Земле. Это происходит в основном из-за высокой смертности в развивающихся странах. В промышленно развитых странах доступность лекарств и вакцин привела к росту уверенности в том, что эта угроза практически преодолена. Однако неожиданное и быстрое распространение таких эпидемий, как малярия, СПИД, туберкулёз, грипп снова сделали актуальной борьбу с инфекционными заболеваниями. В современной эпидемиологической динамике инфекционных болезней произошел переход от классического описательного подхода к росту или уменьшению числа заражённых к математическому моделированию передач, распространения и заражения инфекцией. В эпидемиологии моделирование стало применяться в исследовательских целях для прогнозирования характера эпидемического процесса и для определения стратегии служб здравоохранения.
Одновременно подобные процессы происходят с эпидемиями компьютерных вирусов и других вредоносных программ, наносящих огромный ущерб организациям и отдельным пользователям компьютеров. За последние 10-15 лет распространение вредоносных кодов, носившее локальный характер, превратилось в глобальные эпидемии сетевых вирусов, не требующих для своего распространения участия пользователей. Функционирование многих структур и организаций тесно связано с глобальными сетями и зависит от качества процессов в них. Неограниченно размножающиеся сетевые вирусы фальсифицируют, прерывают или просто прекращают работу компьютерного обеспечения, «забивают» каналы передачи информации, что само по себе наносит значительные убытки, не говоря уже о том, что вирусы могут содержать деструктивные функции, приводящие к потере или утечке важной и конфиденциальной информации.
Будем назвать процессы пространственного распространения и временного изменения этих двух групп эпидемий инфекционной динамикой. Обычно трудно реализуемые пространственные составляющие динамики в предлагаемых моделях берёт на себя структура предфрактального графа, который наращивается объёмными графами - затравками, а динамика наращения предфрактального графа, называемая его распознаванием, отвечает за временную составляющую процесса. Познавательная роль моделей инфекционной динамики определяется их сущностью, предполагающей выявление взаимосвязей многочисленных параметров эпидемического процесса. Модель должна позволять судить о числе контактов, определять степень риска инфицирования, определять пороги заболевания, исследовать особенности возрастного и территориального распределения заболеваемости. Не менее важной функцией модели должно стать накопление статистики при описании многолетней динамики эпидемий, включая сезонные циклы, что открывает возможность более точного описания и прогнозирования тенденций, уровней развития основных показателей эпидемического процесса. Разумное использование методов математического моделирования эпидемического процесса может стать чрезвычайно полезным при планировании профилактических и противоэпидемических мероприятий, для выбора оптимальных путей борьбы с эпидемическим распространением людских и компьютерных вирусов. Хорошо организованная математическая модель, безопасно и количественно заменяя эпидемический процесс, дисциплинирует исследовательскую работу, систематизирует научные знания, приводит к появлению новых идей.
Сегодня либерализующийся мир с высоким потенциалом сетевых человеческих взаимодействий (через личные контакты и сетевые компьютерные мосты) оказался в положении, когда «старые» и «новые» инфекционные заболевания имеют высокий потенциал к бесконтрольному распространению, причём с очень высокой скоростью. Урбанизация, нарастающее ухудшение социально-экологических и санитарно-гигиенических условий проживания сотен миллионов людей в развивающихся и развитых странах мира, всё возрастающие миграционные потоки и процессы глобализации экономики способствуют быстрому распространению инфекционных заболеваний. Как это ни парадоксально, но сегодня реальная угроза начинает исходить от современных высоких информационных и биотехнологий – генной инженерии и молекулярной биологии, всемирных сетей типа Интернет. Дело осложняется тем, что модифицированные микроорганизмы могут стать первопричиной тяжелых эпидемий в результате террористических атак, неконтролируемого их «выхода» из научных лабораторий и промышленных предприятий промышленно-разви- тых стран мира в результате техногенных аварий или природных катастроф.
Очевидно, что новые аспекты современной эпидемиологии с особо опасными инфекциями нам ещё предстоит глубоко изучать и анализировать, в том числе с помощью методов их математического и компьютерного моделирования.
Соответствие темы диссертации требованиям паспорта специальности
Диссертация выполнена в соответствие с пунктами 1 «Разработка новых математических методов моделирования объектов и явлений»; 3 «Разработка, обоснование и тестирование эффективных вычислительных методов с применением современных компьютерных технологий»; 6 «Разработка новых математических методов и алгоритмов проверки адекватности математических моделей объектов на основе данных натурного эксперимента»; 8 «Разработка систем компьютерного и имитационного моделирования» «Паспорта специальности 05.13. 18 – математическое моделирование, численные методы и комплексы программ (физико-математические науки)» ВАК Министерства образования и науки РФ.
Объектом исследования
выступает динамика распространения человеческих инфекций и процессы заражения компьютеров вредоносными программами-вирусами.
Предметом исследования
является комплекс топологических свойств и числовых характеристик предфрактальных графов, позволяющих использовать их для построения моделей заражений людей инфекциями, а компьютеров - программами-вирусами.
Цель и задачи диссертационного исследования
Целью диссертационного исследования является разработка математических моделей структур, особенностей распространения и затухания в них эпидемий (человеческих и компьютерных) на основе предфрактальных графов. Модель конструируется достаточно гибкой и универсальной, даёт возможность изменять различные параметры, чтобы с их помощью настраиваться на моделирование распространения и затухания вредоносных человеческих и компьютерных вирусных инфекций.
Поставленная цель обусловила необходимость решения таких задач:
-
Определение исходных положений с выделением свойств предфрактальных графов, необходимых для моделирования пространственного распределения эпидемий и задач распространения в динамике человеческих и компьютерных инфекций;
-
Разработка алгоритмов распознавания предфрактальных графов как моделей процессов распространения инфекций;
-
Исследование процессов разрушения предфрактальных графов как моделей процессов затухания инфекционных процессов;
-
Определение метрических и числовых характеристик предфрактальных графов, выступающих в качестве основы для математического представления моделей распространения и затухания эпидемических пандемий человечества;
-
Построение на предфрактальных графах математических моделей структуры распространения человеческих эпидемий, возможно, эпидемий диких и домашних животных, а также динамики вирусных атак в компьютерных сетях.
Методы исследования
При решении поставленных задач были использованы методы и подходы теории множеств, теории графов и сетей, теории вероятностей, математической статистики, теории алгоритмов, теории перколяции, теории эпидемий.
Достоверность и обоснованность
всех результатов диссертационного исследования подтверждается последовательной цепью строгих и обоснованных логических умозаключений в виде предложений, лемм и теорем с доказательствами и их следствий.
Научная новизна диссертационного исследования
В работе на основе исследований по распознанию и разрушению предфрактальных графов построены математические модели структур распространения человеческих эпидемий и компьютерных вирусов. Предложенные модели стали инструментом мониторинга, анализа, исследования и прогнозирования саморазвивающихся инфекций в социальных сетях и вредоносных программ в компьютерных сетях. В моделях бытовые контакты людей, объединённых взаимными общими связями, и компьютеров, объединённых в сети, представлены самоподобными разномасштабными конструкциями, содержащими предфрактальные графы с взвешенными вершинами. Научная новизна реализована в следующих конкретных результатах:
построена модель динамики инфекций, отличающаяся использованием математического аппарата предфрактальных графов, позволяющая просчитывать количественно определяемый уровень иммунитета каждого человека к конкретному инфекционному заболеванию, а в случае компьютерных сетей – учитывать степень защищённости каждого компьютера в коммуникационной сети;
с помощью модели просчитан эпидемический порог либо определённого инфекционного заболевания, либо компьютерного вируса, позволяющий прогнозировать дальнейшее распространение или затухание инфекционного процесса;
на каждом этапе распространения с помощью модели определены минимальные условия локализации инфекции, что позволяет построить количественный план развития всего динамического процесса;
динамическая модель позволяет прогнозировать развитие эпидемии благодаря исследованным свойствам процесса порождения предфрактального графа;
с помощью модели выявлены кластеры возможного заражения;
на базе адаптации модели определены возможные очаги эпидемий по заданному графу, отражающему степень заражённости безымунной инфекцией;
вопреки некоторым существующим моделям, показывающим немедленное угасание вспышки инфекции, предложенная модель показала, что отдельные образцы вирусов могут не только сохраняться, но и заражать большую часть узлов, в которых вирусная инфекция либо отсутствовала ранее, либо отсутствует сейчас.
Теоретическая значимость и практическая ценность результатов исследования заключается в следующем:
Результаты диссертационного исследования, связанные с выявлением новых свойств предфрактальных графов с чередованием, нужных для подсчёта числовых характеристик в динамике историй инфекционных болезней, представляют вклад в теорию графов, сетей и предфрактальных графов, в связи с этим имеют общетеоретическую значимость. Результаты работы могут вызвать интерес у специалистов по теории графов, по структурной динамике, по телекоммуникационным сетям и по инфекционным процессам. Свойства и характеристики этих математических моделей, полученные на предфрактальных графах, полезно использованы. Разработаны алгоритмы их распознавания, исследованы условия разрушения предфрактальных графов. В работе показана новая возможность практического использования предфрактальных графов, на их основе предложены и построены математические модели структуры распространения человеческих эпидемий и компьютерных вирусов. Созданы комплексы программ, позволяющие распознавать (строить) предфрактальные графы для моделирования распространения по ним вирусов, а также моделировать затухание эпидемических процессов через разрушение предфрактальных графов, исследовать прочие свойства вирусного распространения и их модельную динамику. Комплексы программ реализованы на языке программирования OBJECT PASCAL. Разработанные программы позволяют практически рассчитать эпидемический порог, условия карантина, а также прогнозировать ход инфекционного процесса и определять возможные очаги заражения безымунными эпидемиями.
Личный вклад соискателя
Все теоретические, алгоритмические и программные результаты диссертационного исследования получены автором самостоятельно.
На защиту выносятся следующие основные положения:
-
Показано, что как динамика распространения людских инфекций в социальных сетях, так и динамика вирусного инфицирования компьютеров в инфотелекоммуникационных сетях имеют одни и те же математические формы, это позволяет для их моделирования унифицировано использовать один и тот же математический аппарат, алгоритмические и программные инструментальные средства;
-
Процессам распространения инфекционных человеческих заболеваний или компьютерных вирусов в полной мере релевантны процессы распознавания (построения) предфрактальных графов – конечных самоподобных, разномасштабных графовых структур, наращиваемые затравками. Они стали основным конструктом математического аппарата моделирования;
-
Процессам затухания инфекционных процессов при моделировании эпидемий адекватны процессы разрушения предфрактальных графов. Таким образом, переход от процессов распространения к процессам угасания инфекционной картины осуществляется на единой математической, алгоритмической, программной базе;
-
Предфрактальные графы обладают специфическими метрическими и числовыми характеристиками, которые потребовали отдельного исследования и вычислений с поиском значений, необходимых для успешного построения новых структур при моделировании инфекционной динамики;
-
С помощью математической модели удаётся получать количественно определяемый уровень иммунитета каждого человека к конкретному инфекционному заболеванию, а в случае компьютерных сетей – степень защищённости каждого компьютера в телекоммуникационной сети; просчитан эпидемический порог определённого инфекционного заболевания либо компьютерного вируса; на каждом этапе распространения определяются минимальные условия локализации инфекции; динамическая модель при использовании топологических свойств процесса порождения предфрактального графа позволяет прогнозировать развитие эпидемии; выявлены кластеры возможного заражения; определены очаги эпидемий по заданному графу, отражающему степень заражённости безымунной инфекцией; вопреки некоторым существующим моделям, показывающим немедленное угасание вспышки инфекции, предложенная модель показала, что отдельные образцы вирусов могут сохраняться долго и повторно заражать большую часть доступных для заражения узлов.
Апробация результатов исследования:
Основные научные и практические результаты работы, полученные автором, докладывались ею и были одобрены на научно-практических конференциях:
-
Международная конференция «Нелокальные краевые задачи и родственные проблемы математической биологии, информатики и физики», г. Нальчик, 2006 г.;
-
VI-ая Международная конференция «Когнитивный анализ и управление развитием ситуаций», г. Москва, 2006 г.;
-
V-ая Международная конференция «Математическое моделирование в образовании, науке и производстве», г. Тирасполь, 2007 г.;
-
VI-ая научно-практическая конференция «Проблемы синергетики в трибологии, трибоэлектрохимии, материаловедении и мехатронике», Новочеркасск, 2007 г.;
-
II-ая Всероссийская научно-практическая конференция «Перспективные системы и задачи управления», г. Таганрог, 2007 г.;
-
Международная конференция, посвященная 100-летию со дня рождения академика И.Н. Векуа, г. Новосибирск, 2007 г.;
-
III-я Всероссийская научно-практическая конференция «Перспективные системы и задачи управления», г. Таганрог, 2008 г.;
-
VIII-ая Международная конференция «Методы и алгоритмы прикладной математики в технике, медицине и экономике», г. Новочеркасск, 2008 г.;
-
VIII-ая региональная научно-практическая конференция «Рациональные пути решения социально-экономических и научно-технических проблем региона», г. Черкесск, 2008 г.;
-
Всероссийская электронная научная конференция «Фундаментальные и прикладные проблемы математики», г. Москва, 2008 г.;
-
IX-ый Всероссийский симпозиум по прикладной и промышленной математике, г. Москва, 2008 г.;
-
X-ая региональная научно-практическая конференция «Рациональные пути решения социально-экономических и научно-практических проблем региона», г. Черкесск, 2010 г.;
-
V-ая Всероссийская научно-практическая конференция «Перспективные системы и задачи управления», г.Таганрог, 2011 г.;
-
XI-ая региональная научно-практическая конференция «Рациональные пути решения социально-экономических и научно-практических проблем региона», г. Черкесск, 2011 г.
Публикации
Основные результаты диссертационного исследования изложены в 24 опубликованных научных работах автора, в том числе 6 статей - в изданиях из Перечня ведущих рецензируемых научных журналов и изданий ВАК Минобрнауки России. Общий объём публикаций составляет 9 п.л., в том числе автора 8.3 п.л. Разработанные программные продукты зарегистрированы в Федеральной службе по интеллектуальной собственности, патентам и товарным знакам, что подтверждается тремя свидетельствами о регистрации программ для ЭВМ.
Структура и объем диссертации
Диссертация состоит из введения, четырёх разделов, заключения, списка использованных источников из 191 наименования, трёх приложений на 62 страницах с описанием разработанного программного комплекса. Текст основной части диссертации изложен на 136 страницах, он содержит 23 рисунка, одну таблицу.