Введение к работе
Актуальность работы
В последние 20 лет различные типы лазеров все шире применяются в промышленности, производя революционные изменения в технологических процессах. Лазерная сварка, резка, гравировка и другие виды обработки материалов становятся обыденным делом. Однако действительно повсеместное использование лазеров часто сдерживается высокой стоимостью лазерных систем и сложностью в эксплуатации.
Высокая стоимость и сложность существующих твердотельных лазерных систем заставляют разработчиков лазерного оборудования все больше и больше обращаться к возможности использования волоконных световодов в качестве активных элементов лазеров. Преимуществами волоконных лазеров являются: прямая накачка лазерными диодами и ее полное поглощение на большой длине, что способствует высокому значению эффективности генерации (80% в случае использования легированного ионами иттербия кварцевого стекла в качестве активного материала); отсутствие проблем, связанных с термооптическими явлениями, которые представляют существенное ограничение для повышения мощности твердотельных лазеров; надежность и простота, по сравнению с неволоконными аналогами.
Дальнейшее развитие идет по двум основным направлениям: первым является повышение мощности, эффективности, качества выходного пучка для лазеров на ионах редкоземельных элементов (в первую очередь на ионах иттербия, а также эрбия, тулия и гольмия). Другое - поиск возможностей для получения генерации в областях спектра, которые не покрываются возможностями генерации на редкоземельных ионах.
В обоих случаях ключевую роль играет материал активной сердцевины волоконного световода. Это должно быть кварцевое стекло, легированное активным веществом (оксидом иттербия, эрбия, тулия, гольмия, висмута и т.п.) и солегированное оксидами алюминия, германия или фосфора. При этом даже небольшие неоднородности в показателе преломления сердцевины могут свести на нет все ухищрения в конструкции оболочки световода, обеспечивающие одномодовость и большой диаметр выходного пучка.
Хорошо отработанные методы получения высокочистого материала для световедущей сердцевины на основе кварцевого стекла, использующие в различных модификациях процесса осаждения из газовой фазы (MCVD, OVD,
PCVD) позволяют в настоящее время производить десятки миллионов километров световодов в год для передачи оптического сигнала в линиях связи. Одним из самых важных параметров у световодов для передачи информации является оптическое затухание. В настоящее время у большинства производимых световодов оно не превышает 0,2 дБ/км на длине волны 1550 нм, вплотную приближаясь к значению затухания, обусловленному фундаментальными механизмами.
Однако, в случае активных световодов для волоконных лазеров и усилителей ситуация оказывается иной. Из-за небольшой длины используемых световодов (десятки метров), здесь не требуются сверхнизкие оптические потери. Достаточным оказывается 20 дБ/км, а при переходе на более эффективные конструкции, когда в одном лазере или каскаде усилителя будет использоваться 1 метр световода или меньше, приемлемыми будут оптические потери на уровне 100 дБ/км. В то же время существенно ужесточаются требования по равномерности распределения легирующих добавок по радиусу сердцевины, а главное, требуется введение в качестве легирующих добавок оксидов редкоземельных металлов или, например, висмута.
В результате, процесс осаждения из газовой фазы существенно усложняется. Обеспечение равномерного легирования по радиусу сердцевины и по длине заготовки волоконного световода оказывается достаточно сложной задачей.
В таком случае возникает желание вернуться к издавна используемому методу получения легированного кварцевого стекла - его варке из смеси оксидов исходных веществ. Однако «классический» вариант - варка в тигле -для данной задачи, как правило, не подходит. Требуемая степень легирования кварцевого стекла сравнительно невысока (несколько молярных процентов в сумме по всем добавкам), поэтому нужна высокая температура варки (больше 1500 С), что требует специальных печей и специальных материалов тиглей. В таких условиях крайне проблематично обеспечить чистоту получаемого стекла на таком уровне, чтобы оптические потери не превышали хотя бы 100 дБ/км. Кроме того, неконтролируемые загрязнения, например из материала тигля, могут существенно исказить люминесцентные свойства стекла.
В то же время, бурное развитие микроструктурированных световодов привело к разработке и усовершенствованию технологии их изготовления, когда капилляры, предварительно вытянутые из высокочистого кварцевого стекла, собираются в требуемую структуру, помещаются в трубку также из
высокочистого кварцевого стекла и затем спекаются («консолидируются») в заготовку, из которой затем вытягивается волоконный световод. Было показано, что при правильном соблюдении всех технологических предосторожностей, оптические потери в таких световодах могут выйти даже на уровень обычных световодов, то есть на 0,2 дБ/км.
Естественно, возникает желание попытаться совместить процесс варки стекла из смеси порошков оксидов с технологией получения микроструктурированных световодов, для получения стекла с приемлемыми для волоконной оптики оптическими потерями. Поэтому целью данной работы было развитие метода получения материала активной сердцевины из смеси порошков оксидов исходных веществ с использованием методик микроструктурирования.
Реализация намеченной цели предусматривала решение следующих задач:
-
Разработать методику спекания смеси порошков оксидов внутри высокочистой кварцевой трубки, исключающую загрязнение материала и образование пузырьков.
-
Разработать методики анализа однородности получаемого материала.
-
Разработать методику дальнейшей гомогенизации полученного материала.
-
Изготовить световоды на основе полученных активных материалов.
-
Провести исследования оптических (в том числе генерационных) характеристик полученных световодов.
Научная новизна работы
-
Впервые повышение однородности материала, полученного методом спекания оксидов, было проведено путем циклического перетягивания-спекания материала. В результате оптические потери в световодах были снижены до уровня 60 дБ/км в случае легирования оксидом алюминия, и до 95 дБ/км в случае легирования оксидами алюминия и иттербия.
-
Данным методом впервые в мире получены волоконные световоды с сердцевиной из плавленого кварца, легированного висмутом и не содержащего дополнительных легирующих примесей. Также впервые в таких
световодах измерены оптические потери в широкой спектральной области 190 - 1700 нм. Люминесцентные свойства (спектры поглощения и времена жизни) висмутовых активных центров в диапазоне 244 - 1700 нм исследованы как в заготовках, так и в вытянутых из них волоконных световодах.
3. Впервые получены легированные висмутом волоконные световоды с оболочкой из кварцевого стекла и с сердцевиной из многокомпонентного стекла (60 mol% Si02, 30 mol% MgO, 10 mol% А1203). Впервые проведено сравнение оптических свойств объемных образцов магний-алюмо-силикатного стекла, легированного висмутом, и волоконных световодов аналогичного состава. Показано, что спектры люминесценции объемных образцов и световодов мало различаются между собой и близки к свойствам алюмосиликатных MCVD-световодов. Образцы объемного стекла, сваренные в иридиевом тигле, обладают примерно на порядок более высоким уровнем так называемых «серых» оптических потерь по сравнению с волоконными световодами, полученными спеканием оксидов в трубке из сверхчистого кварцевого стекла.
Научно-практическая значимость работы
Разработана методика получения активного материала сердцевины волоконных световодов путем спекания порошков оксидов в кварцевой трубке с последующим микроструктурированием (циклами перетягивание-спекание).
Полученные результаты могут быть использованы для разработки активных волоконных световодов с увеличенным размером поля моды, а также в исследованиях по получению новых активных материалов для волоконной оптики.
Работа выполнялась при поддержке Гранта Президента Российской Федерации для государственной поддержки молодых российских ученых № МК-8069.2010.2, а также Гранта Российского Фонда Фундаментальных Исследований № 10-02-00334-а.
Апробация работы
Результаты диссертационной работы были представлены на девятой всероссийской конференции с элементами молодежной научной школы (Саранск, 2010 г.), второй и третьей всероссийских конференциях по волоконной оптике (Пермь, 2009 г., Пермь, 2011г.), на симпозиуме международного общества оптического конструирования SPD3 (Сан-Франциско, США, 2010 г.), европейской
конференции по оптическим коммуникациям ЕСОС (Вена, Австрия, 20 - 24 сентября 2009 г.), третьем международном форуме по нанотехнологиям (Москва, 1 - 3 ноября 2011 г.), а также докладывались на семинарах НЦВО РАН. Основные результаты диссертации представлены в 10 публикациях, 2 из них - в журналах, рекомендованных ВАК.
Структура и объем диссертации
Диссертация состоит из введения, четырех глав, заключения и списка использованных источников. Работа изложена на 101 странице машинописного текста и содержит 40 рисунков и 4 таблицы. Список литературы содержит 68 наименований.