Электронная библиотека диссертаций и авторефератов России
dslib.net
Библиотека диссертаций
Навигация
Каталог диссертаций России
Англоязычные диссертации
Диссертации бесплатно
Предстоящие защиты
Рецензии на автореферат
Отчисления авторам
Мой кабинет
Заказы: забрать, оплатить
Мой личный счет
Мой профиль
Мой авторский профиль
Подписки на рассылки



расширенный поиск

Формирование металлических кластеров катализаторов при росте углеродных нанотрубок Цыганцов, Андрей Валерьевич

Формирование металлических кластеров катализаторов при росте углеродных нанотрубок
<
Формирование металлических кластеров катализаторов при росте углеродных нанотрубок Формирование металлических кластеров катализаторов при росте углеродных нанотрубок Формирование металлических кластеров катализаторов при росте углеродных нанотрубок Формирование металлических кластеров катализаторов при росте углеродных нанотрубок Формирование металлических кластеров катализаторов при росте углеродных нанотрубок
>

Диссертация, - 480 руб., доставка 1-3 часа, с 10-19 (Московское время), кроме воскресенья

Автореферат - бесплатно, доставка 10 минут, круглосуточно, без выходных и праздников

Цыганцов, Андрей Валерьевич. Формирование металлических кластеров катализаторов при росте углеродных нанотрубок : диссертация ... кандидата физико-математических наук : 01.04.07 / Цыганцов Андрей Валерьевич; [Место защиты: Ульян. гос. ун-т].- Ульяновск, 2011.- 118 с.: ил. РГБ ОД, 61 12-1/294

Введение к работе

Актуальность темы

Развитие технологий, связанных с получением и использованием наноматериалов, способно привести к кардинальным изменениям в материаловедении. С практической точки зрения важны исследования наноструктур на основе углерода, в том числе углеродных нанотрубок (УНТ). Впервые УНТ были обнаружены в 1991 году японским ученым Иджимой [1-3] в процессе изучения поверхности углеродных электродов, используемых в электрическом дуговом разрядном аппарате, который применялся для создания фуллеренов. В настоящее время углеродные нанотрубки и углеродные нановолокна (УНВ) интенсивно изучаются. В научной литературе сообщается о новых необычных физико-химических и прочностных свойствах этих образований.

Высокие прочностные свойства УНТ создают прекрасную возможность изготовления композиционных материалов на основе полимеров, каучуков, а также металлов. УНТ может также использоваться для упрочнения металлов и сплавов и усиления жаропрочности мягких металлов (например, меди), имеющих хорошую теплопроводность, но низкую прочность.

Уже сейчас определены области возможного применения углеродных наноматериалов в наноэлектронике. Электронная эмиссионная способность УНТ [3] может применяться в электронных пушках и плоских дисплеях. Появилась возможность использования наноструктур для создания термоэлектрических материалов, добротность которых на порядок выше, чем в массивных аналогах. Квантовые свойства УНТ и УНВ обеспечивают применение их в качестве сенсорных устройств, чувствительных к водороду и другим химическим веществам.

В настоящее время для роста УНТ в основном используется метод химического парофазного осаждения (ХПО), в процессе которого происходит каталитический синтез УНТ. Катализатор оказывает влияние на такие важные параметры, как скорость роста, диаметр и другие показатели качества углеродных нанотрубок. Хотя в целом процессы, происходящие при росте, ясны, теория роста УНТ разработана недостаточно. Существующие модели роста не в состоянии описать всего разнообразия получаемых результатов. Слабо изучены механизмы действия катализатора. Продукты пиролиза углеводородов весьма разнообразны, при этом величины констант, определяющих возникновение того или иного продукта, известны недостаточно точно. Ограничено число контролируемых параметров: температура рабочей зоны, скорость движения газового потока, соотношение реагентов на входе и выход готового продукта. Это не позволяет судить о разнообразии физико-химических процессов, происходящих в реакторе, в зоне роста нанотрубок. Технологический процесс роста УНТ необходимо понимать более полно, для этого следует осуществлять его моделирование.

Таким образом, для развития эффективного производства и использования углеродных наноматериалов важным является разработка теории роста УНВ и УНТ. Необходимо учесть, что на процесс образования нанотрубки существенное влияние оказывает поверхностное натяжение капли катализатора, из которой происходит рост нанотрубки. Доля свободной энергии, приходящейся на поверхностность этой капли, увеличивается с уменьшением её радиуса. Это приводит к размерным мезаскопическим эффектам в катализаторе, которые проявляются, в том числе в уменьшении температуры плавления с уменьшением размеров капли. Размеры капли катализатора оказывают влияние на другие важные процессы, происходящие при росте нанотрубки.

Необходимо разработать модель, которая позволит рассчитать параметры кластеров катализатора, определяющих свойства растущих углеродных нанотрубок. Такая модель разрабатывается и апробируется экспериментально в данной работе.

В связи с вышесказанным тема диссертации является актуальной.

Цели и задачи работы

Целью данной работы является разработка термодинамической модели гомогенной и гетерогенной нуклеации кластеров катализаторов, а также её экспериментальная проверка и определение параметров, определяющих распределение кластеров катализаторов по размерам.

Для достижения данной цели решаются следующие задачи:

– Разрабатывается термодинамика образования кластеров катализаторов и вычисляется теоретическое распределение кластеров по размерам.

– Проводится моделирование образования кластеров методом Монте-Карло. Результаты данного моделирования сравниваются с результатами термодинамических расчетов.

– Выполняются эксперименты по формированию кластеров железа, методом ХПО, с использованием в качестве источника для кластеров катализатора ферроцена, пиролиз которого осуществлялся при различных условиях.

– Разрабатываются алгоритмы и вычисляются величины параметров образования кластеров катализаторов, в том числе температурной зависимости коэффициентов от поверхностного натяжения на границах наноразмерных кластеров с газовой средой и подложкой, а также влияние этих параметров на распределение кластеров по размеру.

Научная новизна

Развита термодинамика гомогенного и гетерогенного образования кластеров катализаторов. Вычислено распределение кластеров по размерам и показано, что определяющую роль в величине моментов этого распределения играет эффективный коэффициент поверхностного натяжения, который является комбинацией коэффициентов поверхностного натяжения границ кластер – газовая среда, подложка – газовая среда, подложка – кластер.

Разработан алгоритм моделирования, основанный на методе Монте-Карло. По этому алгоритму рассчитана гистограмма распределения кластеров по размерам, которая согласуется с результатами термодинамических расчетов.

Экспериментально подтверждены результаты термодинамической теории и расчетов по методу Монте-Карло. Сопоставление экспериментально полученных распределений кластеров по размерам с результатами теоретических расчетов позволило определить коэффициенты поверхностного натяжения на границах раздела кластера, образующегося в результате пиролиза ферроцена, с внешней средой.

Показано, что характерные коэффициенты поверхностного натяжения и наиболее вероятный радиус кластера существенно зависят от температуры. Вычислены эти зависимости, что дает возможность прогнозировать размеры кластеров в зависимости от параметров синтеза, в частности температуры.

Показано, что количеством кластеров определенного размера можно управлять, изменяя активность железа в газовой фазе, которая, в свою очередь, определятся температурами в рабочей зоне и зоне сублимации ферроцена, а также скоростью потока газа-носителя.

Практическая ценность

Полученные в работе теоретические и экспериментальные результаты позволили вычислить значения коэффициентов поверхностного натяжения, определяющих распределение кластеров катализаторов по размеру. Получены аналитические зависимости коэффициента поверхностного натяжения и размеры кластеров от температуры. Это позволяет восстанавливать функцию распределения кластеров по размерам, задавая температуры в рабочей зоне и в области сублимации ферроцена. Тем самым определены важные технологические параметры, изменение которых позволяет управлять размерами кластеров.

– Проведенные термодинамические расчеты позволили установить связь между температурой сублимации ферроцена, скоростью потока газа-носителя и температурой в рабочей зоне реактора с концентрацией кластеров определенного размера. Это дает возможность, изменяя параметры технологического процесса, управлять концентрацией кластеров и, соответственно, плотностью нанотрубок в пучке при выращивании их на подожке с заданными характеристиками.

Основные положения, выносимые на защиту

  1. Комбинацию коэффициентов поверхностного натяжения границ раздела фаз: кластер – газовая среда, подложка – газовая среда, подложка – кластер можно заменить эффективным коэффициентом поверхностного натяжения.

  2. Функция распределения кластеров по размерам имеет асимметричную колоколообразную форму. Нарастающая часть функции зависит от величины эффективного коэффициента поверхностного натяжения.

  3. Моделирование по методу Монте-Карло подтверждает результаты термодинамических расчетов и дает возможность проанализировать влияние температуры на поверхностное натяжение кластеров.

  4. Эксперименты по выращиванию кластеров катализаторов согласуются с результатами теоретических расчетов и моделирования по методу Монте-Карло и позволяют вычислить коэффициенты поверхностного натяжения на границах кластер – газовая среда, подложка – газовая среда, подложка – кластер.

  5. Разработанная термодинамическая модель позволяет повысить управляемость технологическими процессами и, соответственно, плотностью нанотрубок в пучке при выращивании их на подожке с заданными характеристиками.

Апробация работы

Основные положения диссертационной работы представлены на XI и XIII Международной конференции «Опто-, наноэлектроника, нанотехнологии и микросистемы» и в материалах Всероссийской школы «Физические проблемы наноэлектроники, нанотехнологий и микросистем».

Личный вклад автора

С непосредственным участием автора под руководством профессора С. В. Булярского была разработаны термодинамическая модель формирования металлических кластеров и модель на основе метода Монте-Карло, а также проведено сопоставление результатов с экспериментальными данными.

Достоверность

Обоснованность результатов диссертационного исследования достигается:

проверкой теоретических положений экспериментальными исследованиями;

согласованием новых положений с уже известными теоретическими положениями науки и экспериментальными данными других авторов;

публикациями основных результатов работы в рецензируемых центральных изданиях;

обсуждением результатов диссертации на конференциях и симпозиумах, получением рецензий от ведущих специалистов.

Публикации

Опубликовано девять работ, в том числе пять в изданиях ВАК. Четыре статьи опубликованы в трудах Международной конференции «Опто-, наноэлектроника, нанотехнологии и микросистемы» и Всероссийской школы «Физические проблемы наноэлектроники, нанотехнологий и микросистем».

Структура и объем работы

Похожие диссертации на Формирование металлических кластеров катализаторов при росте углеродных нанотрубок