Введение к работе
Актуальность темы. Современные потребности отдельных отраслей прибора и машиностроения связаны с использованием роторов, установленных на подшипники скольжения. Опоры скольжения обладают набором положительных свойств, среди которых: широкий диапазон допустимых скоростей вращения ротора; большой ресурс работы (практически полное отсутствие износа при обеспечении жидкостного трения); высокая способность к демпфированию колебаний; стойкость к тепловым и химическим воздействиям; низкий акустический шум; малые радиальные размеры. Роторно-опорные узлы с подшипниками скольжения применяются в турбонасосах систем топливо-подачи двигательных установок летательных аппаратов, детандерах, насосах для перекачки сред со сложными свойствами, микро-электро-механических системах и других высокотехнологичных устройствах.
Переходные режимы работы (разгон, выбег, маневрирование и т. д.) являются неотъемлемыми процессами эксплуатации любой ротационной машины. Динамика переходных режимов работы роторов во многом влияет на надежное функционирование агрегата в целом. Повышенные вибрации, увеличение температуры в узлах трения могут привести к частичной или полной поломке роторно-опорной системы. Механическая и тепловая нестационарность, одной из причин которой являются подшипники скольжения с жидкостной пленкой, определяет высокую степень нелинейности проблемы исследования переходных режимов. Ротор с подшипниками скольжения действуют как единая система и совместно реагируют на различные кинематические и динамические возмущения. Поэтому в процессе проектирования необходимо исследовать динамические свойства системы в целом. Несмотря на большое количество печатных работ по исследованию динамики роторов на подшипниках скольжения, к настоящему времени малоизученными остаются вопросы динамики переходных режимов, обусловленных непостоянством угловой скорости ротора и механическими контактными взаимодействиями цапфы ротора и втулки подшипника скольжения. Можно сделать вывод, что исследования динамики переходных режимов работы роторов на радиальных подшипниках скольжения являются недостаточно проработанными в теоретическом плане
и остаются актуальной научно-практической заіцдрвй.НАЦИОНАЛЬНАЯ I
Г бШЛЛОТЫСА 1
Настоящая диссертационная работа выполнялась в рамках программ Министерства образования Российской Федерации «Научные исследования высшей школы в области транспорта» (005.02.01.42, 2000 г.), «Научные исследования высшей школы по приоритетным направлениям науки и техники» (205.02.01.001, 205.02.01.056, 2001-2004 гг.), гранта Министерства образования Российской Федерации для поддержки научно-исследовательской работы аспирантов (АОЗ-3.18-164, 2003-2004 гг.), хозяйственных договоров и договоров о научно-техническом сотрудничестве между ОрелГТУ и ОАО «НПО Энергомаш им. акад. В.П. Глушко» (г. Химки Московской обл.), ФГУП «Турбонасос» (г. Воронеж).
Объектом исследования являются роторно-опорные узлы агрегатов с электро- и турбоприводом, включающие различные виды подшипников скольжения с нетрадиционными смазочными материалами.
Предметом исследования являются переходные режимы работы роторов на радиальных подшипниках скольжения, вызванные непостоянством угловой скорости ротора и неустойчивыми режимами работы.
Цель и задачи исследования. Целью работы является теоретическое и экспериментальное изучение динамики переходных режимов работы роторов на радиальных подшипниках скольжения вследствие различных видов кинематического и динамического возмущения.
Достижение цели обеспечено решением следующих задач:
1) разработать математическую модель симметричного несбалансиро
ванного жесткого ротора для проведения анализа динамики переходных ре
жимов работы;
2) разработать математическую модель радиальных подшипников
скольжения различных типов для расчета гидродинамической реакции в
неизотермической постановке и реакции контактного взаимодействия;
-
провести экспериментальные исследования динамики ротора на подшипниках скольжения в условиях переходных режимов с использованием модельной установки и современной информационно-измерительной системы;
-
создать программное обеспечение для динамического расчета ро-торно-опорных узлов с радиальными подшипниками скольжения с учетом переходных режимов возникающих в системе;
5) разработать рекомендации по проектированию для уменьшения негативного влияния переходных режимов на работу роторно-опорного узла. Научная новизна работы:
-
разработана математическая модель для анализа динамики переходных режимов работы симметричных несбалансированных жестких роторов, отличающаяся учетом непостоянства угловой скорости ротора и включением (в неаналитическом виде) нелинейных реакций подшипниковых опор;
-
разработана математическая модель для расчета реакции радиальных подшипников скольжения в неизотермической постановке, включающая сжимаемый смазочный материал с переменными теплофизи чески ми свойствами и отличающаяся учетом механических контактных взаимодействий опорных поверхностей ротора и подшипника;
-
получены закономерности работы роторно-опорных узлов с радиальными подшипниками скольжения различных типов в условиях динамических переходных режимов работы;
-
проведен сравнительный анализ и предложены рекомендации по применению эффективных численных методов для совместного решения системы нелинейных уравнений гидродинамической теории смазки и нелинейных уравнений движения ротора.
Автор выносит на защиту:
-
математические модели, алгоритмы и программу для расчета динамики симметричного несбалансированного жесткого ротора, установленного на радиальные опоры жидкостного трения, с непостоянной угловой скоростью и возможным контактированием с втулкой подшипника;
-
результаты теоретических исследований динамики переходных режимов работы системы «ротор — радиальные подшипники скольжения».
Теоретическая база и методы исследования. Содержание работы в целом опирается на научные труды отечественных и зарубежных ученых в области динамики роторов, гидродинамической теории смазки и вычислительной механики. Динамический анализ системы «ротор — радиальные подшипники скольжения» проводится методом прямого интегрирования. Для численного решения уравнений движения ротора применяются методы Адамса, Ньюмар-ка, Хуболта с адаптивным шагом по времени.
Расчет подшипника основан на совместном решении двумерных уравнений Рейнольдса и баланса энергий. В алгоритме численного решения уравнений гидромеханики используются методы конечных разностей и конечных элементов. Нанесение неструктурированной конечно-элементной сетки осуществляется с помощью триангуляции Делоне. Опорная поверхность многоклинового гидродинамического подшипника моделируется кривыми Безье.
Экспериментальные исследования проводились на специальном стенде с использованием информационно-измерительного оборудования фирм «Руднев-Шиляев», Bruel & Kjaer, Pepperl+Fuchs.
Для анализа рассчитанных и измеренных данных применяется Фурье-и вейвлет-анализ. Программа расчета написана на языке программирования C + + - Для обработки экспериментальных данных и построения графиков использовалась система научных и инженерных расчетов Matlab (Mathworks).
Достоверность полученных результатов обеспечивается корректностью постановки задач исследования, обоснованностью используемых теоретических построений, допущений и ограничений, применением апробированных аналитических и численных методов анализа, а также подтверждается качественным и количественным согласованием теоретических результатов с экспериментальными данными, в том числе полученными другими исследователями, и внедрением результатов диссертации на ряде предприятий.
Практическая значимость работы и внедрение результатов. Построенные в работе математические модели, алгоритмы расчета и программы позволяют получать траектории движения при переходных процессах и кривые разгона ротора; для различных типов радиальных опор скольжения рассчитывать эпюры давлений и температур в смазочном слое, вычислять динамические коэффициенты жесткости и демпфирования подшипника — т. е. проводить проверочные расчеты системы «ротор — радиальные подшипники скольжения» с учетом переходных режимов работы.
Результаты работы внедрены и используются при проектировании высокоскоростных насосов систем топливоподачи двигателей летательных аппаратов в ОАО «НПО Энергомаш им. акад. В.П. Глушко» (г. Химки Московской обл.), а также электротурбогенераторов и насосов для перекачки сред со сложными свойствами в ФГУП «Турбонасос» (г. Воронеж).
Апробация работы. Основные положения и результаты диссертационного исследования докладывались и обсуждались на: школе-семинаре «Современные проблемы механики и прикладной математики» (Воронеж, 2000); Международной научно-технической конференции «Разработка, производство и эксплуатация турбо-, электронасосных агрегатов и систем на их основе — C1/IHT» (Воронеж, 2001, 2003); Всероссийской научно-технической конференции «Прикладные задачи механики и тепломассообмена в авиастроении» (Воронеж, 2001); Международной научно-технической конференции «Вибрационные машины и технологии» (Курск, 2001, 2003); Международной научно-технической конференции «Авиакосмические технологии» (Воронеж, 2002); Международной научно-технической конференции «Проблемы и перспективы развития двигателестроения» (Самара, 2003); Международном симпозиуме «Актуальные проблемы машиностроения и механики сплошных и сыпучих сред» (Москва, 2004), а также на научно-технических конференциях и семинарах профессорско-преподавательского состава Орловского государственного технического университета в 2002-2004 гг. Диссертационная работа была рассмотрена и одобрена на научно-техническом семинаре кафедры 203 «Конструкция и проектирование двигателей летательных аппаратов» Московского авиационного института (государственного технического университета) (Москва, 2004) и на заседании кафедры «Прикладная механика» Орловского государственного технического университета (Орел, 2004).
Публикации. По теме диссертации опубликовано 25 научных работ, включая 14 статей в научных сборниках, 4 тезиса докладов, 3 депонированные работы, а также 3 свидетельства об официальной регистрации программ для ЭВМ, 1 положительное решение на выдачу патента.
Структура и объем работы. Диссертация состоит из введения; пяти глав, заключения, списка литературы и приложений, имеет 160страницоснов-ного текста, 60 рисунков, 6 таблиц. Библиография включает 180 наименований ссылочной литературы.