Введение к работе
Актуальность работы. В настоящее время среди различных источников полиметаллического сырья, содержащего благородные металлы, важную роль играют отходы электроники, электротехники, химической, автомобильной промышленности др. Получение металлов из подобного сырья - оптимальный путь решения многих проблем, в том числе связанных с охраной окружающей среды.
В определенной степени технический уровень переработки промышленных отходов металлургическими методами, содержащих благородные металлы, а также полнота их учета и сбора связаны с проблемой классификации этого сырья. Состав отходов, в частности, лом электронной и электротехнической промышленности, очень разнообразен и резко колеблется по составу, вследствие чего классификация такого сырья связана с большими трудностями. Наряду с благородными, цветными металлами и сплавами в нем присутствуют включения стали, алюминия и неметаллические составляющие (керамика, резина, стекло, пластик и др.). Немаловажным также является то, что наряду с извлечением драгметаллов можно получать дополнительно еще и цветные металлы, например, медь, никель, алюминий и другие.
Эффективный, экономичный, удовлетворяющий требованиям техники безопасности и охраны окружающей среды, универсальный способ, позволяющий перерабатывать одновременно все виды промышленных отходов без предварительной обработки, в настоящее время отсутствует. Поэтому весьма актуальна задача подготовки электронного скрапа с целью гомогенизации отходов и выделения нескольких фракций, однородных по химическому составу и свойствам, что делает их пригодными для последующей металлургической переработке, по той или иной схеме.
Переработка промышленных отходов такого рода в настоящее время в основном ориентирована на медеплавильные предприятия, где благородные металлы извлекаются попутно. Такую ситуацию можно оправдать отсутствием производственных площадей и несовершенством технологий, а также кажущейся простотой технического решения коллектирования драгметаллов конвертирования.
Цель работы. Разработка методов и технологических решений, обеспечивающих эффективную переработку полиметаллического сырья с глубоким извлечением платины и палладия.
Идея работы. Снижение температуры плавки и более полный переход платины и палладия в медный коллектор, что позволит достичь более высокой степени извлечения платиноидов, за счет использования гидроксида натрия на стадии плавки.
Основные задачи исследования:
экспериментальное исследование вещественного состава промышленных отходов поступающих на переработку.
Анализ технических решений для концентрирования и переработки промышленных полупродуктов и металлических ломов, содержащих платиновые металлы.
Экспериментальное исследование и оптимизация технологического режима плавки обогащенных промышленных отходов в индукционной печи.
Экспериментальное исследование и оптимизация технологического режима электролитического растворения медно-платино-палладиевых анодов.
Научное обоснование и разработка рациональной аппаратурно-технологической схемы эффективной переработки промышленных отходов содержащих платину и палладий.
Методы исследований. В работе были использованы экспериментальные и теоретические методы исследований. Лабораторные, укрупненно-лабораторные; анализ продуктов обогащения, плавки, электролиза осуществлялся химическими методами. Для исследования использовался метод рентгеноспектрального микроанализа (РСМА) и рентгенофазового анализа (РФА).
Обоснованность и достоверность научных положений, выводов и рекомендаций обусловлены использованием современных и надежных методов исследования и подтверждается хорошей сходимостью результатов комплексных исследований, выполненных в лабораторных, укрупненно-лабораторных и промышленных условиях.
Научная новизна:
На основание проведенных теоретических и экспериментальных исследований в работе получены следующие результаты:
Выявлено, что при плавке полиметаллических концентратов, содержащих платину и палладий, присутствие гидроксида натрия позволяет значительно снизить температуру процесса, что обеспечивает ускорение и полноту перехода платиноидов в медный коллектор.
Выявлено, что в процессе плавки и дальнейшей разливке на аноды полиметаллического сырья, содержащего платиноиды, содержание свинца более 7% негативно сказываться на однородности анода.
Определены расчетные и экспериментальные величины потенциалов медных анодов в зависимости от количества растворенных в медном коллекторе компонентов концентрата поступающих в плавку, содержащих цветные и благородные металлы.
Защищаемые положения.
С целью повышения скорости и полноты перехода платины и палладия в медный коллектор метало-шлаковой системы следует на стадии плавки полиметаллического сырья в качестве флюса использовать гидроксид натрия, что обеспечивает повышение коэффициента диффузии, который в этих условиях на два порядка превышает коэффициент диффузии компонентов в водно-солевых системах.
Для получения кондиционных платино-палладиевых концентратов пригодных для дальнейшей переработки следует использовать электродную систему Cu-Ni-NiSO4-Cu, обеспечивающую эффективное растворение сплава, образующегося в результате плавки полиметаллического сырья, содержащего платину и палладий. в присутствии медного коллектора.
Практическая значимость работы:
технология плавки лома и других полиметаллических материалов в индукционной печи в присутствии легкоплавкого флюса (гидроксид натрия) является универсальным технологическим решением, обеспечивающим снижения температуры плавки и достижение более высоких показателей перехода платины и палладия в медный коллектор.
установлены условия электрохимического растворения анодов, содержащих платиноиды, позволяющие использовать этот технологический режим для получения кондиционных концентратов, пригодных для дальнейшей переработки по технологии принятой в заводской практике.
разработана универсальная технологическая схема, для переработки радиоэлектронных ломов и технологических отходов предприятий, обеспечивающая индивидуальную переработку партий сырья и расчет с каждым поставщиком РЭЛ.
Степень обоснованности и достоверность научных положений, выводов и рекомендаций, содержащихся в диссертации, подтверждается всесторонним информационным анализом объекта исследования, использованием современных методов исследований и обработки данных, а так же соответствием полученных экспериментальных результатов теории и практике переработки полиметаллического сырья, содержащего платину и палладий.
Апробация работы.
Основные результаты диссертации докладывались на всероссийской конференции «Исследования в области переработки и утилизации техногенных образований и отходов» (Екатеринбург, 2009), на международной конференции молодых ученых (Вроцлав, 2010), на международной конференции молодых ученых на базе Фрайбергской горной академии (Фрайберг 2011).
Личный вклад автора состоит в анализе существующих технологий переработки промышленных отходов, постановке цели и задач исследований, проведении лабораторных исследований, обработке полученных данных, подготовке статей и материалов для участия в конференциях.
Публикации. По теме диссертации опубликовано 7 научных работ, в том числе 2 статьи в журналах, входящих в перечень ВАК Минобрнауки России.
Структура и объем работы. Диссертация состоит из введения, 4 глав, заключения, списка литературы. Работа изложена на 149 страницах машинописного текста, содержит 42 таблицы и 50 рисунков. Библиография включает 127 наименования.