Введение к работе
Актуальность темы диссертации. С ростом количества
используемых частотных диапазонов и увеличением их загруженности,
существенно повысились требования к стабильности опорной частоты
для работы систем связи. Повышенные требования к стабильности
частоты предъявляются также в системах глобального
позиционирования, радиоастрономии, измерительных, медицинских и
других приборах и системах. Основным типом устройств,
используемых в таких системах в качестве опорных источников частоты, являются термокомпенсированные кварцевые генераторы (ТККГ). В случае использования ТККГ в мобильных и космических системах повышенные требования предъявляются не только к стабильности выходной частоты генератора, но и к массогабаритным показателям генератора.
С точки зрения компенсации температурной зависимости частоты, структура ТККГ может быть разделена на пассивную часть, представляющую собой генератор, управляемый напряжением, и активную часть, управляющую генератором, в зависимости от температуры окружающей среды.
С развитием микроэлектроники, все большее распространение получают ТККГ с использованием активной части, выполненной на основе ИС. Данный тип ТККГ обладает существенно меньшими размерами и весом, меньшим энергопотреблением и большей надежностью, по сравнению с ТККГ на основе дискретных элементов.
Основной задачей активной части ТККГ является расчет компенсирующей функции, параметры которой индивидуальны для каждого ТККГ, зависят как от параметров кварцевого резонатора, так и от параметров остальных элементов системы и определяются на этапе настройки ТККГ. В случае использования микросхемы активной части этап поиска параметров компенсирующей функции существенно затрудняется из-за невозможности исследования параметров отдельных элементов системы, что ведет к снижению точности настройки ТККГ.
Кроме того, площадь модуля вычислителя компенсирующей функции, построенного на основе традиционных методов организации вычислений, занимает до 50% кристалла активной части ТККГ, а использование синхронных последовательных интерфейсов для задания параметров компенсирующей функции требует использования дополнительных выводов корпуса ТККГ.
Таким образом, в настоящее время, разработка методов проектирования микросхем активной части ТККГ, позволяющих уменьшить размеры и обеспечить необходимый уровень точности расчетов компенсирующей функции, а так же, методов ускорения и автоматизации поиска параметров компенсирующей функции, являются актуальными и своевременными задачами.
Цель диссертационной работы состоит в исследовании и разработке методов проектирования цифровых схем расчета компенсирующей функции, позволяющих обеспечить высокую точность вычислений, низкое энергопотребление и небольшую площадь, занимаемую на кристалле активной части ТККГ, и методов автоматизации поиска параметров компенсирующей функции, позволяющих увеличить точность настройки компенсирующей функции, реализованной в микросхеме.
Задачи исследования. Для достижения поставленной в работе цели необходимо решить следующие задачи:
-
Исследование основных проблем препятствующих увеличению степени компенсации и уменьшению размеров ТККГ.
-
Исследование помех, вносимых цифровым модулем вычисления компенсирующей функции в работу остальных частей микросхемы активной части ТККГ.
-
Разработка архитектуры цифрового модуля расчета компенсирующих напряжений, позволяющей сократить площадь вычислителя, занимаемую на кристалле ИС активной части ТККГ и обладающей минимальной ошибкой вычисления заданной функции.
-
Разработка методов снижения помех, вносимых цифровыми блоками микросхемы активной части ТККГ в работу устройства.
-
Исследование и разработка интерфейса для управления активной частью ТККГ, позволяющего осуществлять двунаправленный обмен данными, обладающего высокой надежностью и использующего минимальное количество выводов корпуса ТККГ.
-
Исследование и разработка модуля контроллера интерфейса, позволяющего использовать наименьшее количество выводов корпуса.
-
Разработка методики ускоренного нахождения параметров компенсирующей функции ТККГ.
-
Экспериментальная проверка предложенных методов и решений.
Научная новизна работы состоит в следующем:
-
Предложена новая архитектура модуля расчета полиномиальной функции компенсации для микросхем активной части ТККГ на основе последовательных вычислений.
-
Предложен метод реализации архитектуры модуля расчета компенсирующей функции на основе квази-самосинхронной схемотехники с использованием метода перераспределения задержек цепей управления сдвиговых регистров.
-
На основе исследования зависимости частоты от кодов компенсации и температуры предложена новая параметризованная температурная модель ТККГ.
-
Предложен метод поиска оптимальных параметров компенсирующей функции ТККГ, основанный на использовании параметризованной температурной модели с применением методов целочисленного линейного программирования.
-
Для управления микросхемой активной части ТККГ разработан новый интерфейс передачи данных, использующий широтно-импульсный метод кодирования данных.
Практическая ценность работы.
-
Разработанный по технологии 0.6 мкм на основе предложенной архитектуры модуль расчета функции компенсации, обладает более чем в 5 раз меньшей площадью, по сравнению с аналогичными модулями на основе известных архитектур.
-
Метод реализации модуля вычисления компенсирующих напряжений на основе самосинхронной схемотехники с перераспределением задержек управляющих цепей сдвиговых регистров, позволяет на 10% сократить среднее потребление тока и на 60% сократить пиковое потребление тока, что позволяет снизить как общее энергопотребление генератора, так и помехи, вносимые в шины питания и земли микросхемы.
-
Предложенная модель и метод поиска оптимальных параметров компенсирующей функции ТККГ позволяют производить этап настройки генератора за один цикл температурных исследований.
-
Предложенный метод поиска оптимальных параметров компенсирующей функции позволяет снизить температурную нестабильность частоты до ±1.0 * 10~6.
-
Разработанный интерфейс управления активной частью ТККГ позволяет осуществлять двунаправленный обмен данными, используя при этом один вывод корпуса кристалла ТККГ.
Внедрение. Результаты работы внедрены и легли в основу серийно выпускаемых микросхем производства ЗАО «ПКК Миландр» К5860ГН2, что подтверждено актами о внедрении.
Достоверность результатов
Достоверность разработанных методов и решений подтверждена результатами экспериментальных исследований тестовых образцов и серийно выпускаемых микросхем активной части ТККГ.
На защиту выносятся следующие основные положения:
-
Архитектура цифрового модуля расчета функции компенсирующих напряжений, основанная на последовательных вычислениях функции, с использованием схемы умножения по алгоритму Бута, позволяющая существенно сократить площадь кристаллов активной части ТККГ, сохранив при этом точность расчета компенсирующей функции.
-
Метод уменьшения шумов, вносимых цифровым модулем расчета компенсирующих напряжений в цепи питания, основанный на использовании квази-самосинхронной схемотехники с перераспределением задержек управляющих цепей.
-
Параметризованная температурная модель ТККГ на основе интерполяции измерения поведения выходной частоты в зависимости от температуры и параметров компенсирующей функции.
-
Метод определения оптимальных параметров компенсирующей функции на основе предложенной температурной модели.
-
Интерфейс для передачи параметров, необходимых для расчета компенсирующих напряжений, основанный на широтной модуляции данных, и модуль контроллера предложенного интерфейса, обеспечивающие надежную двунаправленную передачу данных и позволяющие сократить количество выводов корпуса ТККГ.
Апробация работы. Основные результаты работы докладывались на следующих конференциях:
14-й международной научно-технической конференции студентов и аспирантов «Радиоэлектроника, электротехника и энергетика», Москва, МЭИ, 2008;
Международной научной молодежной конференции по естественным и техническим дисциплинам "Научному прогрессу -творчество молодых", Йошкар-Ола, МарГТУ,2010;
Международной научно-технической конференции с элементами научной школы для молодежи. «Проектирование систем на кристалле: тенденции развития и проблемы», Москва, МИЭТ, 2010.
17-й всероссийской межвузовской научно-технической конференции студентов и аспирантов «Микроэлектроника и информатика - 2010», Москва, МИЭТ, 2010.
Moscow-Bavarian Joint Advanced Student School (MB-JASS), Москва, МИЭТ, 2011.
18-й всероссийской межвузовской научно-технической конференции студентов и аспирантов «Микроэлектроника и информатика - 2011», Москва, МИЭТ, 2011.
Международной научной молодежной конференции по естественным и техническим дисциплинам "Научному прогрессу -творчество молодых", Йошкар-Ола, МарГТУ,2011;
Публикации. Результаты диссертационной работы отражены в 13 научных работах, в том числе 6 статьях в периодических печатных изданиях, 5 из которых опубликованы в журналах, входящих в перечень ВАК, тезисах 7 докладов на научно-технических конференциях.
Структура и объем диссертации. Диссертация состоит из введения, четырех глав, заключения и списка используемой литературы. Диссертация изложена на 123 листах основного текста, включая 89 рисунков и 9 таблиц, список литературы из 107 наименований.