Электронная библиотека диссертаций и авторефератов России
dslib.net
Библиотека диссертаций
Навигация
Каталог диссертаций России
Англоязычные диссертации
Диссертации бесплатно
Предстоящие защиты
Рецензии на автореферат
Отчисления авторам
Мой кабинет
Заказы: забрать, оплатить
Мой личный счет
Мой профиль
Мой авторский профиль
Подписки на рассылки



расширенный поиск

Разработка научно-технологических основ производства катализаторов дегидрирования для синтеза изопрена Гильманов, Хамит Хамисович

Разработка научно-технологических основ производства катализаторов дегидрирования для синтеза изопрена
<
Разработка научно-технологических основ производства катализаторов дегидрирования для синтеза изопрена Разработка научно-технологических основ производства катализаторов дегидрирования для синтеза изопрена Разработка научно-технологических основ производства катализаторов дегидрирования для синтеза изопрена Разработка научно-технологических основ производства катализаторов дегидрирования для синтеза изопрена Разработка научно-технологических основ производства катализаторов дегидрирования для синтеза изопрена
>

Диссертация, - 480 руб., доставка 1-3 часа, с 10-19 (Московское время), кроме воскресенья

Автореферат - бесплатно, доставка 10 минут, круглосуточно, без выходных и праздников

Гильманов, Хамит Хамисович. Разработка научно-технологических основ производства катализаторов дегидрирования для синтеза изопрена : диссертация ... доктора технических наук : 05.17.01 / Гильманов Хамит Хамисович; [Место защиты: Казан. гос. технол. ун-т].- Казань, 2010.- 304 с.: ил. РГБ ОД, 71 11-5/15

Введение к работе

Актуальность темы. Изопрен является важнейшим мономером для производства синтетических каучуков и резинотехнических изделий. Мировые мощности по производству синтетического изопренового каучука сегодня превышают 1,3 млн. т/год. В Российской Федерации производится около 430 тыс. т изопрена в год, из которого 50 % получают на ОАО «Нижнекамскнефтехим», что составляет 16,5 % от общего мирового объема.

Практически все технологии производства изопрена в РФ представляют собой каталитические процессы (пиролизом получают лишь 3 % этого мономера) и поэтому экономическая эффективность производства определяется качеством используемых катализаторов - неорганических веществ, представляющих собой сложные оксидные или нанесенные металлоксидные системы. Большие объемы производства изопрена требуют и соответствующих объемов производства катализаторов, являющегося важной и неотъемлемой частью технологии неорганических веществ. Так, потребность только ОАО «Нижнекамскнефтехим» в микросферических алюмохромовых катализаторах дегидрирования составляет более 3000 т, железокалиевых катализаторах дегидрирования около 300 т в год. Это наиболее крупнотоннажные производства катализаторов для нефтехимической промышленности.

Базовые промышленные технологии производства изопрена в РФ были разработаны в 70-е годы прошлого столетия ОАО НИИ «Ярсинтез» и являются сегодня достаточно энерго- и материалоемкими, что в значительной степени обусловлено устаревшим парком катализаторов. Так, микросферический катализатор ИМ-2201 вследствие низких прочностных характеристик в условиях промышленной эксплуатации имеет высокую расходную норму (до 24 кг/т олефина), а более совершенные катализаторы АОК-73-21 (АОК-73-24) характеризуются высоким абразивным эффектом. Для железокалиевых отечественных катализаторов К-28, К-24ИМ характерна высокая крекирующая активность и коксование при эксплуатации при температурах более 630 С, а катализатор КИМ-1 имеет низкую механическую прочность, что при эксплуатации в реакторах с загрузкой 25 и 50 т приводит к его разрушению и снижению эксплуатационных характеристик.

На отечественном катализаторном рынке синтеза изопрена начинают доминировать катализаторы импортных производителей. Так, отечественные железо-калиевые катализаторы синтеза изопрена из изоамиленов вытесняются катализаторами фирм «BASF» и «Shell», эффективные микросферические алюмохромо-вые катализаторы дегидрирования изопарафинов поставляет фирма «Engelhard».

Разработка и внедрение новых технологий и катализаторов производства изопрена требует больших капитальных затрат и времени, а модернизация катализаторов в рамках действующего производства требует значительно меньших вложений и позволяет повысить эффективность технологии. Так, увеличение выхода изоамиленов на железокалиевом катализаторе дегидрирования на 1 % в условиях ОАО «Нижнекамскнефтехим» позволит получить дополнительно 2500 т изопрена в год, а рост селективности процесса дегидрирования изобутана на 1 % сэкономит 1400 т сырья без привлечения дополнительных капиталовложений.

Новые знания, полученные при разработке технологий производства микросферических катализаторов дегидрирования С4-С5 изопарафинов, могут быть использованы и для совершенствования близких по идеологии технологий производства катализаторов дегидрирования пропана, оксихлорирования этилена, процессов Клауса. Совершенствование технологии производства железокалиевых систем дегидрирования изоамиленов можно трансформировать для улучшения эффективности близких по рецептуре и технологии производства катализаторов дегидрирования этилбензола до стирола и т.д.

Диссертационная работа направлена на решение важной народнохозяйственной задачи в области производства изопрена - разработки технологий производства высокоэффективных отечественных катализаторов одно- и двух-стадийного процессов синтеза изопрена, позволяющих за счет улучшения эксплуатационных свойств увеличить выход мономера, снизить энергопотребление и улучшить экологию производства.

В диссертации изложены работы автора в период с 2001 по 2010 г. по разработке катализаторов дегидрирования с заданными эксплуатационными свойствами.

Работа выполнена в соответствии с Перечнем критических технологий и перспективных направлений науки и техники Российской Федерации - «Технологии создания мембран и каталитических систем», тематическим планом НИР Казанского государственного университета № 1.11.06 «Физико-химические аспекты процессов катализа, сорбции, комплексообразования и межмолекулярного взаимодействия. Фундаментальное исследование» (per. № 0120060964), № 1.16.08 «Влияние электромагнитного поля на каталитическую активность и магнитные фазовые переходы в полиферритных системах» (per. № 01200804822), № 1.18.09 «Разработка технологии синтеза фазовооднородного алюмооксидного нанострук-турного носителя для микросферических катализаторов нефтехимии» (per. № 01200952915).

Цель и задачи исследования. Целью работы является разработка научно-технологических основ производства высокоэффективных отечественных катализаторов одно- и двухстадийного процессов синтеза изопрена, позволяющих повысить конкурентоспособность российской нефтехимической продукции на мировом рынке.

Для достижения поставленной цели необходимо решить следующие задачи.

1. Разработать научно-технологические основы производства катализаторов
для двухстадийного процесса синтеза изопрена:

- микросферического алюмохромового катализатора дегидрирования С4-С5
изопарафинов,

- железокалиевого катализатора дегидрирования изоамиленов до изопрена.

  1. Разработать технологии промышленного производства микросферического алюмохромового и железокалиевого катализаторов дегидрирования и внедрить в промышленную практику.

  2. Разработать научно-технологические основы получения катализатора для одностадийного процесса синтеза изопрена из изопентана и технико-экономическое обоснование для его промышленной реализации.

Методики исследования. В диссертационной работе для решения поставленных задач использовались стандартные и современные методы и методики исследования. Результаты сравнивались и сопоставлялись с известными данными других авторов.

Для исследования состава, структурных, физико-механических характеристик и физико-химических свойств использовались методы термического, рент-генофазового, гарнулометрического анализов, электронной микроскопии, низкотемпературной адсорбции азота, ртутной порометрии, атомно-эмиссионной спектрометрии, стандартные методики оценки свойств используемых соединений. Исследовались следующие характеристики катализаторов: фазовый состав, фракционный состав, прочность гранул, абразивная активность, влагопоглощение, удельная поверхность, порометрический объем, размеры пор, распределение объема пор по диаметрам, параметры кристаллитов, морфология кристаллов, каталитические показатели.

Результаты экспериментальных исследований и измерений обрабатывались с применением методов математической статистики.

Научная новизна работы.

1. На базе выявленных зависимостей состава, структуры и условий формирования эффективных катализаторов с оптимальными эксплуатационными характеристиками сформулированы научно-технологические основы производства новых катализаторов первой стадии двухстадийного процесса синтеза изопрена (дегидрирования С4-С5 изопарафинов), включающие в себя:

синтез микросферического алюмохромового катализатора, имеющего стабильный фазовый и структурный составы алюмооксидного носителя: Y-AI2O3 (95-100 %) с минимальным содержанием рентгеноаморфного продукта с объемом пор по влагопоглощению 0,5-0,6 г/см ; для данного типа носителей определено оптимальное содержание активного компонента Сг20з=12-13 масс. % и промотора К20=1,5-2,0 масс. % для высокоактивного и К2О=2,0-2,5 масс. % для селективного катализатора;

способ стабилизации структуры и фазового состава алюмооксидного микросферического носителя на основе продукта термохимической активации три-гидрата алюминия путем его термообработки при 550 С в течение 2 ч, что позволяет дегидратировать оставшуюся фазу тригидрата алюминия, обуславливающую агрегацию микрогранул носителя и увеличить порометрический объем носителя на 80-100 %;

для данных типов носителей оптимальное содержание ионов Сг растворимого типа, составляющее 2,4 % при поверхностной концентрации хрома 9 ат/нм и атомном отношении Ncr/NK=4,0-5,4 ат/ат, что обеспечивает максимальный (не менее 48 %) выход изобутилена в процессе дегидрирования изобутана;

положение, показывающее, что крекирующая активность алюмохромовых катализаторов определяется не только кислотными центрами алюмооксидного носителя, но и содержанием ионов Сг связанного типа. Минимальный выход Ci-Сз углеводородов (не более 3,7-3,9 %) достигается при их содержании от 1,1 до 1,2 масс. % и соответствующей концентрации оксида калия в катализаторе 2,0-2,5 масс. %.

2. Сформулированы научно-технологические основы производства новых
катализаторов второй стадии двухстадийного процесса синтеза изопрена (дегид
рирования изоамиленов до изопрена), включающие в себя:

обоснование необходимости введения оксидов церия в ферритную систему при синтезе железокалиевого катализатора, способствующего диспергированию ее вторичных частиц и приводящего к образованию большого количества моноферрита калия, обладающего высокой каталитической активностью;

положение, позволяющее в зависимости от давления формования катализа-торной пасты проводить процесс дегидрирования в диффузионной (Р>25МПа) или кинетической (Р>250МПа) областях. Установлена зависимость активности катализатора от содержания в нем пор диаметром 300-1000 А.

3. Для платинооловянного катализатора одностадийного процесса дегидри
рования изопентана в изопрен показано, что текстура и каталитическая актив
ность в значительной степени определяются размерами микрокристаллита алю-
моцинкового шпинельного носителя. Максимальный выход продуктов дегидри
рования (изопрен + изоамилены) более 32 % с селективностью не менее 86 % на
блюдается для размеров микрокристаллита носителя 250-300 А.

Практическая значимость работы. На основании проведенных теоретических и экспериментальных исследований для двухстадийного процесса синтеза изопрена разработаны и реализованы:

- Промышленная технология производства микросферического катализатора
дегидрирования изобутана на стабилизированном алюмооксидном носителе на
ОАО «Химический завод им. Л.Я. Карпова» (г. Менделеевск) производительно
стью 1000 т в год. Катализатор обеспечивает в условиях промышленной эксплуа
тации выход изобутилена не менее 35 %.

- Промышленная технология производства железокалиевого катализатора
дегидрирования метилбутенов в изопрен на катализаторной фабрике (II промыш
ленная зона) ОАО «Нижнекамскнефтехим» объемом 300 т в год и покрывающая
100 % потребности объединения в данном катализаторе. Катализатор обеспечи
вает в условиях промышленной эксплуатации выход изопрена на пропущенные
метилбутены не менее 30 % и на разложенные метилбутены не менее 90 %.

Катализаторы эксплуатируются на ОАО «Нижнекамскнефтехим». Совокупный экономический эффект от использования комплекса разработанных катализаторов более 44 млн. руб. в год.

Для одностадийного процесса синтеза изопрена разработаны платинооло-вянный катализатор дегидрирования изопентана и технология его производства. Катализатор обеспечивает выход продуктов дегидрирования не менее 32 % с селективностью не менее 86 %.

Катализатор прошел стадию лабораторных испытаний, подготовлено техническое задание на проектирование и рабочий проект для проведения опытно-промышленных испытаний катализатора. Проведение ОПИ планируется в III квартале 2010 года. Ожидаемый экономический эффект от внедрения более 300 млн. руб. в год.

Таким образом, диссертационная работа представляет собой научно обоснованную технологическую разработку, обеспечивающую решение важной народ-

но-хозяйственной проблемы в области производства изопрена для отечественной и зарубежной промышленности, заключающуюся в создании комплекса катализаторов дегидрирования для двухстадийного и одностадийного синтезов изопрена и новых технологий их производства.

Разработанные научно-технологические основы производства катализаторов дегидрирования могут быть использованы для разработки других каталитических систем: железокалиевого катализатора дегидрирования стирола в изопрен, катализатора одностадийного дегидрирования бутана до бутадиена (процесс Гудри), микросферического катализатора окислительного хлорирования этилена.

Результаты работ используются в дисциплинах «Современные проблемы катализа», «Гетерогенный катализ» в Казанском государственном университете, «Технология производства катализаторов» в Казанском государственном технологическом университете.

Основные положения, выносимые на защиту:

  1. Научно-технологические основы производства микросферического алю-мохромового катализатора дегидрирования С4-С5 изопарафинов и железокалиевого катализатора дегидрирования изоамиленов до изопрена для двухстадийного процесса синтеза изопрена; получения платинооловянного катализатора для одностадийного процесса синтеза изопрена из изопентана.

  2. Способ стабилизации фазового состава и структуры микросферического алюмооксидного носителя алюмохромового катализатора дегидрирования изобу-тана, обеспечивающий дегидратацию остаточного тригидрата алюминия, увеличение порометрического объема на 80-100 % и предотвращающий агрегацию микрогранул.

  3. Результаты экспериментального исследования закономерностей формирования активной фазы микросферического алюмохромового катализатора при нанесении на стабилизированный алюмооксидный носитель оксидов хрома и калия, обеспечивающей максимальный выход изобутилена и минимальный выход продуктов крекинга в процессе дегидрирования изобутана.

  4. Новая промышленная технология и оптимизированные режимы основных стадий производства микросферического алюмохромового катализатора дегидрирования изобутана на стабилизированном алюмооксидном носителе, обеспечивающего в условиях промышленной эксплуатации выход изобутилена не менее 35 % при объемной скорости подачи 35-37 т/час и температуре 557-562 С.

  5. Результаты теоретического и экспериментального исследования влияния химического, гранулометрического составов, структурных особенностей оксидов железа на формирование ферритной фазы и эксплуатационные свойства железо-калиевых катализаторов; изучения закономерностей формирования ферритной фазы и каталитической активности железокалиевых катализаторов при промоти-ровании оксида железа церием, калием, молибденом.

  6. Промышленная технология и оптимизированные режимы основных стадий производства железокалиевого катализатора дегидрирования метилбутенов в изопрен, характеризующегося в условиях промышленной эксплуатации активностью не менее 30 %, селективностью по изопрену не менее 89 % с температурой

эксплуатации до 640 С, нагрузках по сырью до 7 т/ч и массовом разбавлении сырья паром 1:6.

7. Способ получения платинооловянного катализатора одностадийного синтеза изопрена из изопентана и оптимальные условия его эксплуатации, обеспечивающие выход изопрена на пропущенный изопентан, не менее 16 %; конверсию изопентана, не менее 68 %; выход суммы (изопрен + изоамилены) на разложенный изопентан, не менее 75 %.

Апробация результатов работы и публикации. Результаты исследований докладывались на следующих Международных и Российских конференциях: XV International Conference on Chemical Reactors, Helsinki, 2001; VI Российская конференция «Механизмы каталитических реакций», г. Москва, 2002; Конференция, посвященная памяти профессора Ю.И. Ермакова «Молекулярный дизайн катализаторов и катализ в процессах переработки углеводородов и полимеризации», г. Омск, 2005; Международная научная конференции «Спектроскопия, рентгенография и кристаллохимия минералов», г. Казань, 2005; VII международная конференция по интенсификации нефтехимических процессов «Нефтехимия-2005», г.Нижнекамск, 2005; V Российская конфе-ренция с участием стран СНГ «Проблемы дезактивации катализаторов», VI Российская конференция с участием стран СНГ «Научные основы приготовление и технологии катализаторов», г. Новосибирск «Пансионат Химик», 2008; III Российская конференция (с международным участием) «Актуальные проблемы нефтехимии», г. Звенигород, 2009.

Основные результаты работы изложены в 56 печатных работах, в том числе в 32 статьях в ведущих рецензируемых научных журналах, рекомендованных ВАК, 9 патентах на изобретение.

Личный вклад автора в опубликованных в соавторстве работах состоит в постановке задачи, формулировке основных направлений и разработке методологии исследования, анализе и обобщении полученных экспериментальных результатов, организации работ по проведению опытно-промышленных испытаний и производства катализаторов. Вклад автора является решающим во всех разделах работы. Автор благодарит к.х.н. Егорову С. Р. за консультации, оказанные при выполнении работы и обсуждении результатов. Автор принимал участие в подготовке 2 кандидатских диссертаций по теме исследования.

Структура и объем работы. Диссертация состоит из введения, 5 глав, общих выводов, библиографии из 323 наименований и приложений на 12 страницах. Диссертация изложена на 304 страницах машинописного текста, содержит 79 рисунков, 65 таблиц.

Похожие диссертации на Разработка научно-технологических основ производства катализаторов дегидрирования для синтеза изопрена