Введение к работе
Тлеющие разряды постоянного тока в газах низкой плотности широко используются в различных технологиях и научных приложениях. Многочисленны применения тлеющего разряда для плазмо химического осаждения тонких пленок и покрытий в микроэлектронике, в плазменных дисплейных панелях, для активации газа в плазмохимических реакторах, для очистки поверхностей материалов, при создании активных сред газоразрядных лазеров и различных источников света, в газоразрядных коммутирующих приборах и т.д. Стратификация положительного столба тлеющего разряда в трубках часто несет деструктивную функцию, так как нарушается однородность плазмы разряда. Однако, существование стратифицированного режима необходимо, например, в пылевой плазме тлеющих разрядов для образования пылевых кристаллов. Отметим также, что явления, аналогичные эффекту стратификации, встречаются не только в области физики (различные виды неустойчив остей в гидродинамике, геофизике, физике полупроводников), но и в смежных областях науки (химии, биологии, экологии и др.). .J;; Недавнее экспериментальное наблюдение стратификации тлеющего разряда в сферической геометрии показало существенные отличия от разряда в трубках, теоретическому исследованию которых посвящено большое число работ. В отличие :от традиционных тлеющих разрядов в трубках, в сферическом разряде реализуется сходящийся поток электронов к центральному аноду, отсутствуют поперечные по отношению. приложенному электрическому полю диффузионные потоки заряженных частиц и их потери на стенках. С теоретической точки зрения сферический разряд представляет собой уникальный объект. Он обладает высокой степенью симметрии: все параметры зависят только от расстояния до центра анода, что позволяет провести его моделирование в одномерной постановке.
Несмотря на то, что явления стратификации в газовых разрядах и образование в них пространственных структур известно уже более ста лет, существует ряд фундаментальных нерешенных проблем. Связано это с огромным количеством различных процессов, происходящих в разряде, с нелинейным характером уравнений, описывающих физическую и химическую кинетику существенно многокомпонентной смеси, включающей нейтральные частицы в различных электронных состояниях, положительные и отрицательные ионы, и электроны. Современная тенденция, прослеживаемая по трудам международных конференций последних пяти-шести лет по плазмохимии (ISPC), по физике ионизованных газов (ICPIG, ESCAMPIG) или физики газового разряда, состоит в том, что для описания функции распределения электронов по энергиям (ФРЭЭ), нестационарного уравнения непрерывности для ионов и уравнения Пуассона для самосогласованного электрического поля в положительном столбе разряда.
- впервые представлен численный метод решения нестационарного нелокального уравнения Больцмана для ФРЭЭ в переменных «кинетическая энергия электронов -пространственная координата», который позволил проследить за динамикой формирования функции распределения электронов в знакопеременном электрическом поле. Подтвержден диффузионный механизм переноса электронного тока в знакопеременном электрическом поле.
- впервые самосогласованная кинетическая модель тлеющего разряда применена для описания всего разрядного промежутка от анода до катода, описана динамика формирования катодного слоя, отрицательного свечения и фарадеева темного пространства и стратифицированного положительного столба разряда.
Достоверность полученных результатов подтверждается тестовыми расчетами и сопоставлением результатов с теоретическими, экспериментальными и расчетными, данными других авторов. На защиту выносятся:
- Результаты численного моделирования сферического тлеющего разряда:
описание временной эволюции основных параметров разряда, полученные вольтамперные характеристики разряда, катодные характеристики разряда, явление автоколебаний параметров разряда и эффект Ганна в сферическом тлеющем разряде.
- Результаты и численные методы решения стационарного и нестационарного нелокального уравнения Больцмана для функции распределения электронов по энергии в заданном однородном, модулированном и знакопеременном электрическом поле.
Результаты и методика численного моделирования стратификации положительного столба тлеющих разрядов плоской и сферической геометрии в самосогласованной постановке.
- Результаты численного моделирования тлеющего разряда для всего разрядного промежутка в самосогласованной постановке от анода до катода, описание динамики образования катодного слоя, отрицательного свечения и фарадееватемного пространства и стратифицированного положительного столба.
- Создание программы численного решения нелокального нестационарного уравнения Больцмана для функции распределения электронов по энергии; отработка методов расчета с выявлением особенностей временного развития стратифицированной функции распределения в положительном столбе плоского и сферического тлеющих разрядов в азоте и аргоне низкого давления.
- Развитие метода решения нестационарного нелокального уравнения Больцмана для функции распределения электронов в переменных «кинетическая энергия электронов - пространственная координата» методом установления; применение метода для расчета ФРЭЭ в знакопеременном электрическом поле; тестовые расчеты и сравнение с результатами, полученными с помощью других моделей.
- Развитие сам о согласованной модели плоского и сферического тлеющих разрядов в инертных газах низкого давления; анализ полученных результатов и сравнение с экспериментальными результатами.
- Развитие самосогласованной гибридной модели, основанной на одновременном рассмотрении нелокального нестационарного уравнения Больцмана уравнений непрерывности для электронов и ионов, и уравнения Пуассона, для описания развития основных параметров плазмы плоского тлеющего разряда во всем разрядном промежутке. і
Представление изложенных в диссертации и выносимых на защиту результатов, согласовано с соавторами.