Электронная библиотека диссертаций и авторефератов России
dslib.net
Библиотека диссертаций
Навигация
Каталог диссертаций России
Англоязычные диссертации
Диссертации бесплатно
Предстоящие защиты
Рецензии на автореферат
Отчисления авторам
Мой кабинет
Заказы: забрать, оплатить
Мой личный счет
Мой профиль
Мой авторский профиль
Подписки на рассылки



расширенный поиск

Методы широкоугольного сканирования в системах дистанционного зондирования радиодиапазона Прилуцкий, Андрей Алексеевич

Диссертация, - 480 руб., доставка 1-3 часа, с 10-19 (Московское время), кроме воскресенья

Автореферат - бесплатно, доставка 10 минут, круглосуточно, без выходных и праздников

Прилуцкий, Андрей Алексеевич. Методы широкоугольного сканирования в системах дистанционного зондирования радиодиапазона : диссертация ... доктора физико-математических наук : 01.04.01 / Прилуцкий Андрей Алексеевич; [Место защиты: Научно-технологический центр уникального приборостроения РАН].- Москва, 2012.- 334 с.: ил. РГБ ОД, 71 13-1/18

Введение к работе

Актуальность научной проблемы обусловлена интенсивным развитием научных приборов, систем дистанционного зондирования (ДЗ) Земли и других планет солнечной системы, радиовидения, радиометрии и радиоастрономии, которые должны осуществлять обзор пространства (поверхности) в широком диапазоне углов наблюдения. Однако широкоугольный обзор пространства всегда входит в противоречие с энергетическим потенциалом системы. Поэтому, одним из путей повышения эффективности работы систем дистанционного зондирования является использование широкоугольного сканирования пространства узким лучом антенной системы.

Под широкоугольным сканированием понимается угол обзора пространства, который намного больше ширины луча антенной системы. В этом случае к таким антенным системам предъявляются всё более жесткие требования по обеспечению высокоскоростного обзора широкого пространственного сектора, оперативного управления формой диаграммы направленности антенны. С этими задачами в настоящее время успешно справляются фазированные антенные решетки (ФАР), состоящие из тысяч - десятков тысяч излучателей. В настоящее время ведутся интенсивные работы в области совершенствования известных и создания новых типов ФАР, происходит интенсивное освоение СВЧ и КВЧ диапазонов частот.

Характеристики излучателей в составе антенной решетки отличаются от характеристик изолированного излучателя из-за наличия взаимных связей между ними и в силу краевых эффектов характеристики существенно зависят от их расположения в антенной решетке. Из-за этих физических явлений при сканировании диаграммой направленности антенны возникает рассогласование в трактах излучателей, вплоть до полного запирания («ослепления») антенной системы - полное отражение. С помощью простых трансформаторов сопротивлений в фидерах проблему ослепления ФАР и широкоугольного согласования при сканировании не решить. Для компенсации изменения входного импеданса излучателей при сканировании, организуются дополнительные цепи связи между фидерами, питающими излучатели, диэлектрические вставки внутри волноводов и многослойное диэлектрическое укрытие, многомодовые трансформаторы в апертуре излучателей, запредельные секции волноводов в апертуре, а так же пассивные проводящие элементы, устанавливаемые в раскрыве АР. Поэтому разработка методов компенсации изменения входного импеданса при широкоугольном сканировании ФАР в заданной полосе рабочих частот является актуальной научно-технической задачей.

В состав практических конструкций ФАР, как правило, входит очень важный элемент - радиопрозрачное укрытие (РПУ). В случае ФАР для авиационной и космической техники РПУ носит название радиопрозрачный обтекатель. Основное назначение РПУ это защита от внешних воздействий среды аппаратуры радиоэлектронных комплексов. Механические и климатические внешние воздействия предъявляют требования к конструкции обтекателя по механической прочности, тепловому и аэродинамическому сопротивлению, вступающие в противоречия с функциональными радиотехническими требованиями, в том числе и с требованиями по широкоугольности сканирования в широкой полосе частот. В то же время, конструкция обтекателя, состоящая из диэлектрических слоев и пассивных проводящих проводников, оптимизированная совместно с излучающей структурой ФАР, позволяет решить компромиссную задачу защиты от внешних воздействий и задачу широкоугольного сканирования в требуемой полосе частот. Помимо этого, часто к конструкции обтекателя предъявляют требования по частотной селекции. Частотная селективность обтекателя в этом случае решает задачи радиомаскировки или снижения радиолокационной заметности летательного аппарата. Поэтому проблема разработки методов широкоугольного согласования ФАР из открытых концов волноводов при сканировании с использованием пассивных согласующих устройств, размещенных в слоях магнитодиэлектрика, образующих единую конструкцию антенна-обтекатель, является актуальной научной и практической задачей.

Для реализации широкоугольного сканирования антенной системой в сантиметровом и миллиметровом диапазоне волн научной и технической проблемой является создание фазовращателей, так как размеры фазовращателей ограничены размером периодической ячейки. Размеры ячейки могут быть существенно меньше длины волны, что необходимо для обеспечения режима сканирования без возбуждения дополнительных интерференционных максимумов в рабочей полосе частот. Кроме того, для фазированных антенных решеток этих диапазонов является определенной проблемой создание и распределительной системы для возбуждения излучающих элементов антенны. Поэтому актуальным является исследование физических процессов в ФАР с оптическими схемами распределения сигнала возбуждения, а в частности отражательных антенных решеток (ОАР), состоящих из реконфигурируемых излучателей, реализующих широкоугольное сканирование диаграммой направленности антенны, в которых модуляция фазы отраженной волны обеспечивается изменением геометрии (реконфигурацией) излучателя. Таким образом, реконфигурация излучателя в составе ОАР приводит к изменению поверхностного импеданса рефлектора антенны. Рефлектор, выполненный по многослойной печатной технологии, образует покрытие с управляемым поверхностным импедансом, которое в мировой литературе относят к технологии интеллектуальных покрытий или технологии Smart Skin. В последние годы наметился большой интерес исследователей и разработчиков к этому новому научному направлению. С использованием этой технологии можно создавать бортовые конформные антенны, цилиндрические и более сложной формы сканирующие антенны мобильных систем связи, радиолокационные покрытия летательных аппаратов, и многое другое. Технология интеллектуальных покрытий, применительно к антеннам, предусматривает интеграцию в одной конструкции излучающего элемента и элемента управления. Примером таких интегрированных систем являются, например, реконфигурируемые антенны, в которых возможность управления фазой излучения заложена в конструкцию элемента ФАР. В качестве исполнительного элемента при реконфигурации излучателя ФАР применяют СВЧ-ключи, выполненные по технологии микро и наноэлектромеханических систем (МЭМС и НЭМС). Однако у таких ключей есть и существенные недостатки, поэтому в практических конструкциях трудно обеспечить необходимую развязку между цепями управления, питания и информационной несущей частоты СВЧ или КВЧ диапазона. Проблема может быть решена с использованием элементов с оптронным управлением. Поэтому актуальными является проблема исследования физических явлений процессов происходящих в интеллектуальных антенных и радиолокационных покрытиях с оптронным управлением, а так же разработка методов их проектирования.

Альтернативой МЭМС-ключам, как элемента управления в реконфигурируемой антенне, могут являться полупроводниковые фоторезистивные (ПФР) СВЧ-ключи, использующие эффект фотопроводности (оптронный СВЧ-ключ). В последнее десятилетие достигнуты значительные успехи в синтезе полупроводниковых тонкопленочных материалов для изготовления полупроводниковых приборов с необходимыми свойствами темновой и освещенной фотопроводимости. Поэтому проблемы исследования реконфигурируемых антенн и интеллектуальных антенных покрытий с оптронным управлением поверхностным импедансом, использующие полупроводниковые фотопроводящие пленки, являются так же актуальными.

Таким образом, существует народно-хозяйственная задача повышения эффективности систем дистанционного зондирования радиодиапазона ЭМВ и улучшения качества научных исследований за счёт увеличения информативности полученных результатов зондирования путём развития методов широкоугольного сканирования в приборах ДЗ в рамках ограниченного энергетического потенциала.

Научной проблемой, вытекающей из народно-хозяйственной задачи, является исследование физических явлений и процессов, происходящих при широкоугольном электронном и оптоэлектронном сканировании в антенных системах, которые могут быть использованы для создания принципиально новых приборов ДЗ радиодиапазона ЭМВ.

Объект исследования- электромагнитные поля, возбуждаемые и рассеиваемые в многоэлементных волноводных, щелевых, печатных фазированных и отражательных антенных решетках и их элементах.

Область исследования - электродинамика антенных систем в виде многоэлементных отражательных и фазированных АР с оптронным управлением с широкоугольным сканированием и теория их проектирования.

Предметом исследования являются:

фазированные и отражательные антенные решетки из волноводных, щелевых и полосковых дипольных излучателей с широкоугольным сканированием луча с пассивными согласующими элементами в слоях магнитодиэлектрика, установленные в раскрыве антенны, методики их проектирования;

отражательные антенны в виде интеллектуальных покрытий с оптронным управлением поверхностным импедансом на основе фотопроводящих полупроводниковых пленок и реконфигурируемых щелевых или полосковых излучателей с фотопроводящими полупроводниковыми СВЧ-ключами, а так же методики их проектирования.

Цель исследований. Развитие методов электронного и оптоэлектронного широкоугольного сканирования в антенных системах приборов ДЗ радиодиапазона ЭМВ, а также ряда теоретических положений, математического моделирования и практики построения фазированных и отражательных антенных решеток сантиметрового и миллиметрового диапазона волн с широкоугольным электронным и оптоэлектронным сканированием, а так же новых типов сканирующих антенн на основе интеллектуальных покрытий.

Задачи исследований, которые вытекают из поставленной цели:

    1. Разработать эффективные методики учета влияния на электродинамическом уровне строгости конструктивных элементов фазированных антенных решеток из щелевых излучателей в торцах волновода с учетом многослойных магнитодиэлектрических вставок внутри волноводов и многослойного диэлектрического укрытия перед апертурой.

    2. Разработать эффективные электродинамические модели многоэлементных антенных решеток из волноводов с согласующей металлодиэлектрической средой (МДС) перед раскрывом антенны в виде щелевых экранов, полосковых (ленточных) проводников, диполей или многорядных сеток из цилиндрических проводников и их комбинаций в слоях магнитодиэлектрика в приближении бесконечных и конечных в бесконечном пассивном окружении периодических структур.

    3. Разработать эффективные электродинамические модели сканирующих отражательных антенных решеток в виде интеллектуальных покрытий с оптронным и электронным управлением поверхностным импедансом на основе фотопроводящих полупроводниковых пленок и реконфигурируемых излучателей с ПФР СВЧ-ключами.

    4. Исследовать с помощью созданных электродинамических моделей периодические ФАР с МДС перед раскрывом с широкоугольным сканированием луча в широкой полосе частот и линейной поляризации с низким уровнем кроссовой поляризационной составляющей.

    5. Исследовать с помощью созданных электродинамических моделей сканирующие отражательные АР с оптически управляемым поверхностным импедансом в виде многослойной структуры металл-диэлектрик- полупроводник (МДП-структуры) и реконфигурируемых щелевых и дипольных излучателей с использованием ПФР СВЧ-ключей в качестве элемента коммутации.

    6. Экспериментально исследовать возможности широкоугольного согласования фрагмента волноводной ФАР с помощью МДС, установленной перед раскрывом антенны, а так же в волноводном имитаторе характеристики рассеяния ЭМВ на щелевом излучателе ОАР.

    Методика исследования - методы решения трехмерных задач электродинамики бесконечных и конечных периодических излучающих структур с использованием математического аппарата интегральных уравнений первого рода с последующим их решением проекционными методами.

    Научная новизна диссертационной работы состоит в разработке и обобщении ряда теоретических положений, разработке методологии проектирования ряда инновационных конструкций, совокупность которых можно квалифицировать, как решение крупной научной проблемы и развитие перспективного направления в области антенн СВЧ и КВЧ, имеющего важное народно-хозяйственное и оборонное значение.

    Конкретно научную новизну составляют впервые полученные результаты:

    1. Сформулирован единый подход к решению задачи электродинамического анализа методами ИУ первого рода волноводных фазированных антенных решеток с многослойной металлодиэлектрической средой перед раскрывом и многослойным частичным заполнением волноводов в приближении бесконечной периодической структуры для случая, когда МДС состоит либо из чередующихся диэлектрических слоев и металлических экранов конечной толщины со щелевыми излучателями и (либо) из чередующихся диэлектрических слоев и полосковых (ленточных) излучателей. Внутренняя и внешняя граничные задачи электродинамики сведены к системе ИУ относительно неизвестных полей в раскрывах волноводов, щелей и токов на полосках с последующим решением её модифицированным методом Галеркина с использованием базиса из ортогональных тригонометрических координатных функций с весом, учитывающим условие Мейкснера на кромках раскрывов волноводов, щелей и полосках (лент). Исследована корректность задачи, сформулированной в виде ИУ первого рода со сложными ядрами в спектральном представлении. Обоснован метод решения и выбор базисных функций.

        1. Проведено обобщение электродинамической теории применительно к волноводным антенным решеткам с металлодиэлектрической средой, установленной перед раскрывом, позволившее получить новое знания по широкоугольному согласованию сканирующих остронаправленных антенн.

        2. Разработана электродинамическая модель широкоугольной сканирующей волноводной антенной решетки с многорядной сеткой из цилиндрических проводников перед раскрывом антенны в приближении бесконечной и конечной в бесконечном пассивном окружении периодической структуры.

        3. Разработаны электродинамические модели сканирующих отражательных антенных решеток в виде интеллектуальных покрытий с оптронным управлением поверхностным импедансом на основе ПФР пленок и реконфигурируемых щелевых и дипольных излучателей с ПФР СВЧ- ключами.

        4. Результаты исследований характеристик отражательных антенных решеток в виде интеллектуальных покрытий с оптронным управлением поверхностным импедансом, а именно диаграммы направленности плоских и цилиндрических отражательных антенн. Определены требования к динамическому диапазону изменения фотопроводимости полупроводниковых элементов конструкции интеллектуального покрытия в освещенном и темновом состоянии, определены геометрические параметры антенны.

        5. Предложен метод широкоугольного согласования волноводных ФАР с использованием экранов со щелевыми излучателями, установленными перед раскрывом антенны, обеспечивающий эффективную компенсацию изменения входного импеданса антенны при сканировании.

        6. Предложен метод широкоугольного согласования волноводных ФАР с использованием экранов со сдвоенными и строенными щелевыми излучателями в каждом периоде решетки, установленными перед раскрывом антенны, обеспечивающий эффективную компенсацию изменения входного импеданса антенны при сканировании в широкой полосе частот.

        7. Предложен метод широкоугольного согласования волноводных ФАР с использованием многорядных сеток из цилиндрических проводников, установленных перед раскрывом антенны, обеспечивающий эффективную компенсацию изменения входного импеданса антенны при сканировании в Н-плоскости.

        8. Предложен метод широкоугольного согласования волноводных ФАР с использованием пассивного комбинированного устройства, состоящего из цилиндрических или ленточных проводников, установленных перед раскрывом антенны параллельно Е-плоскости волноводов, и пассивных закороченных волноводов (дроссель), размещаемых между активными волноводами в Е-плоскости, обеспечивающего эффективную компенсацию изменения входного импеданса антенны при сканировании в Е-плоскости и Н-плоскости.

        Научная значимость работы состоит

        в развитии электродинамической теории широкоугольного электронного и оптоэлектронного сканирования в приборах ДЗ радиодиапазона ЭМВ;

        в создании методологии построения инновационных систем ДЗ в радиодиапазоне ЭМВ.

        Практическая значимость результатов, полученных в диссертационной работе, заключается в том, что на их основе:

        Предложены ряд инновационных конструкций сканирующих отражательных антенн в виде интеллектуальных покрытий с оптронным управлением поверхностным импедансом покрытия, а именно: в виде многослойной структуры чередующихся слоев диэлектрика и полупроводниковой пленки планарной или конформной конструкции и ребристой поверхности с тем же многослойным заполнением.

        Предложена новая конструкция сканирующей отражательной антенной решетки из реконфигурируемых сдвоенных щелевых излучателей в каждом периоде решетки. Реконфигурация щелевых излучателей обеспечивается за счет коммутации их ПФР СВЧ-ключами с оптическим возбуждением.

        Разработана методика и программы для ЭВМ, позволяющие проектировать многослойные радиопрозрачные антенные обтекатели совместно с волноводной антенной решеткой.

        Разработана методика, измерительный стенд и программы обработки экспериментальных данных, позволяющие проводить исследование и прогнозирование характеристик согласования и диаграммы направленности многоэлементных ФАР, состоящей из тысяч излучателей на фрагменте антенной решетки из нескольких сотен излучателей при широкоугольном сканировании в секторе углов ± 60 в широкой полосе частот.

        Основные положения диссертации, выносимые на защиту

        1. Комплекс электродинамических моделей многоэлементных фазированных антенных решеток из волноводов с пассивными согласующими элементами в раскрыве и отражательных антенных решеток с управляемым поверхностным импедансом, опирающихся на решение трехмерных задач электромагнитного возбуждения в приближении бесконечных и конечных периодических структур:

        Модель ФАР из открытых концов волноводов с многощелевыми излучателями в торцах, с многослойным магнитодиэлектрическим заполнением или частичным магнитодиэлектрическим заполнением волноводов в поперечном сечении и многослойным диэлектрическим укрытием перед раскрывом;

        Модель ФАР из открытых концов волноводов с диафрагмой в раскрыве, с многослойным магнитодиэлектрическим заполнением волноводов, частичным магнитодиэлектрическим заполнением волноводов в поперечном сечении и с одним или двумя щелевыми экранами в слоях диэлектрика, установленными перед раскрывом, образующие металлодиэлектрическую среду;

        Модель ФАР из открытых концов волноводов с частичным магнитодиэлектрическим заполнением в поперечном сечении с многорядной сеткой из цилиндрических проводников, установленной в раскрыве антенны;

        Модель ФАР из открытых концов волноводов с частичным магнитодиэлектрическим заполнением в поперечном сечении металлодиэлектрической средой из ленточных излучателей, установленной в раскрыве антенны;

        Модель планарных или конформных сканирующих отражательных антенн с оптически управляемым поверхностным импедансом в виде многослойной структуры чередующихся слоев диэлектрика и полупроводниковой пленки и ребристой поверхности с тем же многослойным заполнением;

        Модель сканирующей отражательной антенной решетки из реконфигурируемых щелевых и дипольных излучателей с использованием фотопроводящих СВЧ-ключей с одним, двумя и более щелями (диполями) в периоде АР.

        Широкоугольный, широкополосный элемент ФАР из сдвоенных или строенных щелевых излучателей в торцах волноводов.

        Новый метод широкоугольного согласования ФАР из открытых концов прямоугольных волноводов с помощью одного или нескольких щелевых экранов, размещаемых перед раскрывом ФАР.

        Новый метод широкоугольного согласования волноводных ФАР с использованием пассивного комбинированного устройства, состоящего из цилиндрических или ленточных проводников, установленных перед раскрывом антенны параллельно Е-плоскости волноводов, и пассивных закороченных волноводов (дроссель), размещаемых между активными волноводами в Е-плоскости.

        Результаты проведенных исследований и параметры периодической структуры волноводов и согласующих устройств, при которых обеспечивается широкоугольное широкополосное согласование ФАР.

        Новые конструкции планарных и конформных сканирующих отражательных антенн с оптически управляемым поверхностным импедансом в виде многослойной структуры чередующихся слоев диэлектрика и фотопроводящей полупроводниковой пленки и структуры в виде ребристой поверхности с тем же многослойным заполнением.

        Новая конструкция сканирующей отражательной антенной решетки из реконфигурируемых излучающих элементов, состоящих из одной, двух и более щелей, изменение геометрии в которых осуществляется с использованием фотопроводящих СВЧ-ключей, интегрированных в излучатель.

        Результаты исследований и параметры сканирующих реконфигурируемых отражательных антенных решеток.

        Достоверность результатов подтверждается

        Математической корректностью решения краевых задач электродинамики, которые опираются на строгие и приближенные математические методы;

        Проведенными экспериментальными исследованиями, которые выполнены по апробированным методикам с помощью аттестованной стандартной измерительной аппаратуры;

        Согласованием основных теоретических положений, как с экспериментальными данными, так и в частных случаях математических моделей с известными опубликованными результатами.

        Реализация и внедрение результатов работы

        Изложенные в диссертации результаты исследований получены автором в ходе выполнения госбюджетных, хоздоговорных и инициативных коммерческих НИР и ОКР, проводимых в ОАО «НПК «НИИДАР», ООО «СиБи Град», ЗАО «Техноград Проект», ЗАО «НИИДАР-ГРАД», ЗАО «МИНЦ». Во многих этих НИР и ОКР автор являлся главным разработчиком антенно-фидерных устройств, научным руководителем научно- исследовательских работ и главным конструктором ОКР. Результаты работы используются предприятиями отрасли, в/ч 71330, зарубежной фирмой Component Communications Incorporation (USA), а антенны под торговой маркой «Град» серийно производятся и используются российскими и зарубежными предприятиями связи, вычислительные программы и алгоритмы внедрены в процесс проектирования радиотехнических комплексов в НИИ и на промышленных предприятиях. Выше сказанное подтверждается соответствующими актами внедрения результатов диссертационной работы.

        Личный вклад автора. В работах, выполненных в соавторстве, автору принадлежит выбор и постановка задач исследования; математическое обоснование и вывод основных аналитических выражений; разработка алгоритмов расчета; участие в составлении программ расчета, обсуждение и интерпретации полученных результатов; формулировка основных выводов и положений работ.

        Апробация работы. Основные результаты работы докладывались и обсуждались:

        1. На международных конференциях "Акустооптические и радиолокационные методы измерений и обработки информации" (ARMIMP- 2009, 2011), г. Суздаль, Россия, в 2009, 2011гг.

        На международных конференциях "Радиолокация, навигация, связь" (RLNC 2009, RLNC 2010), г. Воронеж в 2009, 2010 гг.

        На международном симпозиуме «Progress In Electromagnetics Research Symposium» (PIERS 2009), г. Москвав 2009 г.

        На международном объединенном Фельдовском и APS, LEOSandMTT/ED семинаре, ИРЭ РАН, г. Москва в 2009 г.

        На 3-й Всероссийской научно-практической конференции «Космическая радиолокация», г. Муром в 2010 г.

        На Всероссийских конференциях «Радиолокация и радиосвязь», г. Москва, ИРЭ РАН в 2009, 2010 гг.

        На VIII Всесоюзной научно-технической конференции «Перспективы развития и применения средств вычислительной техники для моделирования и автоматизированного исследования», ВНТОРЭС им. А.С.Попова, г. Москва в 1991 г.

        На межрегиональной научно-технической конференции ВНТО Радиотехники, электроники и связи им. А.С.Попова «Сложные антенные системы и их компоненты. Теория, применение, экспериментальные исследования», г. Ленинград в 1991 г.

        На Всесоюзных научно-технических конференциях «Теория и техника антенн», Москва, в 1985, 1987 гг.

        На семинаре МНТОРЭС им. А.С. Попова «Электродинамика и техника СВЧ, КВЧ и оптических частот», г. Москва в 2009 г.

        На семинаре кафедры математики физического факультета МГУ им. М.В. Ломоносова «Математические методы в естественных науках», г. Москва в 2007 г.

        Публикации. Основные результаты исследований опубликованы в 43 научных работах, в том числе: 12 - научные статьи в журналах, входящих в «Перечень ...», из них без соавторов - 5 статей; 8 - статей в региональных научных журналах; 15 - публикации в сборниках научных трудов и в материалах научно-технических конференций; 1 - авторское свидетельство на изобретение, 6 - депонированных рукописей.

        Структура и объем работы. Диссертационная работа состоит из введения, шести разделов, заключения, и трех приложений с результатами экспериментов и актами внедрения. Основная часть диссертационной работы изложена на 291 машинописных страницах текста, в числе которых 180 рисунков и 7 таблиц и библиографический список из 122 наименования.

        Похожие диссертации на Методы широкоугольного сканирования в системах дистанционного зондирования радиодиапазона