Введение к работе
Актуальность темы. Задача синтеза законов оптимального по быстродействию (ОБ) управления является одной из актуальнейших задач теории автоматического управления.
Однако с решением этой задачи связаны многие проблемы. Во-первых, ее аналитическое решение удается найти в редких случаях и лишь для простых объектов управления (ОУ). Во-вторых, найденные решения представляют собой разрывные ЗУ, которые имеют плохую обусловленность из-за погрешности техники и исключают асимптотичность процесса управления. Иными словами, теоретически синтезируемый оптимальный по быстродействию закон управления на практике становится неоптимальным. В связи с этим для решения задачи синтеза ОБ управления применяются аппроксимационные подходы. Законы управления, синтезируемые с помощью таких подходов, называются законами квазиоптимального управления. Результаты применения законов квазиоптимального по быстродействию управления (КОБ) мало отличаются от результатов ОБ управления, но образуемые ими системы приобретают многие преимущества: становятся асимптотичными и робастными.
В настоящее время в работах, выполненных под руководством проф. Р.А. Нейдорфа, показано, что наиболее перспективными подходами к синтезу законов КОБ управления являются соподчиненный и диффеоморф-ный подходы. Эти подходы позволяют синтезировать законы КОБ управления для динамических объектов произвольного порядка со скалярным управлением представленных в управляемой форме Жордана. Однако для систем с векторным управлением они, фактически, не гарантируют решение задачи синтеза законов КОБ управления из-за отсутствия эффективного механизма декомпозиции математических моделей (ММ) ОУ в подходящую форму.
Все перечисленные факторы делают актуальными проблемы разработки методов исследовать возможности декомпозиции многомерных динамических систем и их внедрения в задачах синтеза законов векторного квазиоптимального по быстродействию управления.
Объектами исследования являются ММ многомерных объектов и систем автоматического управления, а также нелинейные законы КОБ управления этими объектами.
Цель и основные задачи диссертационной работы
Основной целью диссертации являются разработка методов исследования многомерных и многовходовых динамических систем и их декомпозиции на составляющие их более простые, но управляемые подсистемы, а также применения результатов декомпозиции в задачах синтеза законов векторного КОБ управления.
Для достижения поставленной в работе цели планировалось решение следующих научных задач:
-
исследование управляемых структур динамических систем со скалярным управлением, которые допускают синтез аналитических законов КОБ управления, с целью выделения структурных характеристик систем жордановой формы;
-
введение на основе выявленных характеристик в теоретический инструментарий ТАУ понятия структур жордановых подсистем многомерных динамических систем и их исследование с целью обеспечения свойств наследования управляемости по ведущим переменным состояния;
-
разработка, а также алгоритмическая и программная реализация методов исследования возможности декомпозировать многомерные динамические системы на подсистемы с обоснованными структурными свойствами;
-
разработка методов, использующих результаты декомпозиции многомерных систем и специфику построенных структур подсистем, для синтеза законов векторного КОБ управления многомерными системами на основе соподчинённого и диффеоморфного подходов;
-
создание средств программной поддержки методов синтеза законов векторного КОБ управления многомерными динамическими объектами.
Полученные в диссертации существенные научные результаты и их научная новизна
-
Аналитический критерий «жордановости» систем управления со скалярным управлением разработан, в отличие от предложенного проф. А.Р. Гайдуком, применительно к произвольной форме записи ММ динамической системы и позволяет учитывать специфику её физической реализации.
-
Понятие и математически сформулированные структурные признаки жордановых подсистем управления многомерных динамических систем, согласующиеся с задачами синтеза КОБ законов управления, впервые позволили применить понятие и преимущества жордановых форм к задачам векторного управления.
-
Алгоритмы исследования возможности декомпозиции многомерных динамических систем на жордановы подсистемы позволили перейти от используемой до сих пор трудоёмкой процедуры ручного исследования и преобразования ММ многовходовых ОУ при подготовке их к решению задач синтеза.
4. Алгоритмы реализации соподчинённого и диффеоморфного
подходов к синтезу законов векторного КОБ управления для многомерных
систем с использованием их декомпозиции на жордановы подсистемы
расширили диапазон объектов и задач КОБ управления, допускающих
практическое применение идей и методов квазиоптимизации.
Практическая значимость результатов диссертации состоит в получении хорошо формализованной и поддержанной средствами программной реализации совокупности методов и плюригмов решения сложной научно-технической задачи синтеза векторных законов КОБ управления многовходовыми многомерными нелинейными ОУ. В приложении к производственно-техническим задачам полученные результаты расширяют диапазон внедрения прогрессивных идей квазиоптимизации быстро действия, повышающих эффективность решения многих технических и технологических задач. В приложении к системе высшего профессионального образования результаты диссертации полезны как пример эффективного применения системного подхода к решению научных и прикладных задач.
Методы исследовании. В работе использованы методы теории множеств, функционального и математического анализа, теории дифференциальных уравнений, теории матриц, математические методы исследования нелинейных систем автоматического управления, методы численного имитационного моделирования динамических систем, а также современные технологии программирования.
Достоверность результатов исследования определяются строгим соблюдением математических законов корректности производимых выводов, доказательств и построения алгоритмов программной реализации методик декомпозиции ММ и синтеза КОБ законов управления на ЭВМ. При этом разработанное программное обеспечение зарегистрировано в Федеральной службе по интеллектуальной собственности, патентам и товарным знакам (свидетельство № 2008614406 Роспатента от 12 сентября 2008).
Соответствие диссертации научному плану работ и целевым комплексным программам. Тема диссертационной работы сформулирована в связи с реализацией госбюджетных научных исследований 2004-2006 гг по теме «Разработка теоретических основ интервально-аппроксимационной организации и оптимизации управления в замкнутых автоматических системах», выполняемой по тематическому плану Ми-нобрнауки под руководством проф. Нейдорфа Р.А. Она также соответствует одному из направлений госбюджетных работ, выполняемых кафедрой «Программное обеспечение вычислительной техники и автоматизированных систем» Донского государственного технического университета -«Разработка теоретических основ /; -параметрической квазиоптимизации законов управления в замкнутых автоматических системах» в части её раздела «Математическое обоснование методов синтеза законов квазиоптимального по быстродействию управления техническими системами высокого порядка».
Апробация диссертационной работы. Материалы диссертационной работы апробировались на международной научной конференции (МНК) "Математические методы в технике и технологиях": XIX МНК -ММТТ-19 (ВГТА, Воронеж, 2006); XX МНК - ММТТ-20 (ЯГТУ, Ярославль, 2007); XXI МНК - ММТТ-21 (СҐТУ, Саратов, 2008). Промежуточные материалы диссертационного исследования докладывались на ежегодных научно-технических конференциях Донского государственного технического университета в 2006 - 2008 гг.
Публикации. Всего по теме диссертации опубликовано 8 работ, в которых освещены наиболее существенные ее результаты. Большинство работ опубликовано в сборниках научных трудов международных конференций ММТТ-19, ММТТ-20, ММТТ-21, ШМУ. Несколько статей вышло в межвузовском аспирантском сборнике «Системный анализ, управление и обработка информации». По основным итоговым результатам исследований опубликована статья в журнале «Вестник ДГТУ», входящем в перечень изданий, признаваемых ВАК РФ.