Введение к работе
Актуальность исследования. Современный этап развития теории автоматического управления характеризуется более полным и глубоким анализом функционирования и эффективности автоматических систем при учете реальных режимов работы и действующих возмущений. Актуальной является проблема разработки алгоритмов управления, обеспечивающих не только устойчивость системы в этих условиях, но и оптимальное ее функционирование по некоторым критериям качества. Решению этих задач посвящено множество работ. Так в условиях полной определенности в теории оптимального управления предложен LQR – подход. Однако при наличии произвольных внешних возмущений, невозможности точно определить параметры модели объекта, изменении динамических свойств системы в процессе функционирования оптимальные системы, синтезированные по квадратичному критерию качества, часто теряют работоспособность. Большими возможностями в этих условиях обладает робастный подход к построению систем управления. К настоящему времени получено достаточно много алгоритмов построения субоптимальных систем для линейных и нелинейных объектов, подверженных параметрическим и внешним возмущениям: -оптимизация, -оптимизация, -синтез, LMI-подход и др. Следует отметить, что большинство имеющихся методов синтеза предназначены для стационарных систем. Однако практика в изобилии доставляет объекты управления, которые описываются параметрически неопределенными нелинейными, нестационарными, с запаздыванием по состоянию дифференциальными уравнениями.
Особое внимание на сегодняшний день уделяется робастному и робастно-субоптимальному управлению системами, когда полный вектор состояния не доступен измерению, а измеряется только вектор выходных переменных. Управление по выходу позволяет уменьшить затраты на проектирование и разработку измерительных устройств, которые увеличивают размерность математической модели системы и вносят дополнительные погрешности, связанные с ошибками измерений.
Таким образом, задача разработки простых в реализации алгоритмов робастного и робастного субоптимального управления для широкого класса динамических объектов по выходу, обеспечивающих их функционирование в соответствии с заданными требованиями по качеству при наличии влияния возмущений, остается актуальной в теории и практике автоматических систем.
Объект исследования. Параметрически неопределенные непрерывные динамические объекты, функционирующие в условиях неопределенности.
Предмет исследования. Методы робастного субоптимального управления динамическими объектами с компенсацией внутренних и ограниченных внешних возмущений.
Целью диссертационной работы является синтез алгоритмов робастного субоптимального управления для различных типов непрерывных динамических объектов, подверженных действию параметрических и внешних ограниченных возмущений для повышения эффективности качества регулирования.
Задачи работы.
-
Синтез робастных субоптимальных алгоритмов управления для линейных стационарных динамических объектов с измеряемым вектором состояния с компенсацией возмущений;
-
Разработка робастной субоптимальной структуры управления для различных типов динамических объектов по выходу в условиях неопределенности;
-
Решение задачи робастного субоптимального управления с эталонной моделью линейными и нелинейными объектами.
Методы исследования. При получении теоретических результатов использовались методы робастного и оптимального управления. В работе также использованы общие методы теории автоматического управления, методы функций Ляпунова, алгебры многочленов и теории матриц, теории дифференциальных уравнений с отклоняющимся аргументом.
Достоверность и обоснованность работы. Обоснованность полученных результатов обусловлена корректным применением вышеперечисленных методов. Работоспособность аналитических результатов проиллюстрирована на многочисленных примерах численного моделирования в среде MatLab/Simulink.
Научная новизна диссертационного исследования.
-
Разработана алгоритмическая структура робастного субоптимального управления априорно неопределенными линейными объектами с измеряемым вектором состояния.
-
Синтезирован закон управления для различных типов линейных динамических объектов по выходу. Полученный регулятор обеспечивает робастную стабилизацию исследуемой системы в условиях неопределенности и оптимизацию ее функционирования по заданному критерию качества.
-
Для нелинейных объектов управления с запаздыванием по состоянию и без него получена структура алгоритма, обеспечивающая субминимизацию интегрального критерия качества в условиях неопределенности.
-
Получено решение субоптимальной задачи слежения за эталонным сигналом для линейных и нелинейных объектов управления с запаздыванием по состоянию и без него с компенсацией возмущений.
Личный вклад автора в работах, выполненных в соавторстве:
расчет параметров регулятора, теоретическое обоснование функционирования системы управления, анализ устойчивости системы, моделирование синтезированных алгоритмов в [1] – [3], [5] – [7].
Практическая и научная значимость работы. Представленные в диссертационной работе результаты могут быть использованы для построения автоматизированных систем управления технологическими процессами, модели которых содержат нелинейные блоки, запаздывания, параметры, известные не точно, либо изменяющиеся во времени. Кроме того, в управляемых процессах могут присутствовать неизвестные внешние возмущения. В этих условиях синтезированный робастный субоптимальный алгоритм управления обеспечивает стабилизацию объекта и достижение оптимального по заданному критерию качества функционирование системы. Полученный регулятор прост в технической реализации и применим для широкого класса технологических объектов.
На основе теоретических результатов работы разработано робастное субоптимальное алгоритмическое обеспечение системы управления процессом разделения бинарной смеси в промышленной ректификационной колонне.
Апробация результатов. Основные положения и результаты работы докладывались и обсуждались на Международной конференции «Проблемы управления, передачи и обработки информации» – АТМ-ТКИ-50 (г. Саратов, 2009), на 7-ой научно-технической конференции «Мехатроника, автоматизация, управление» – МАУ-2010 (г. Санкт-Петербург, 2010), на ежегодных научно-практических конференциях профессорско-преподавательского состава АГТУ (г. Астрахань, 2008-2011).