Введение к работе
Актуальность темы. Возросший в последние годы интерес к экономико-математическим моделям не ослабевает. Переход страны к рыночной экономике способствует тому, что появляются новые задачи на микро- и мезоуровнях, которые требуют неотложного решения. При этом возникает естественная необходимость в применении все более сложных методов для решения поставленных задач. К этому следует добавить, что необходимо иметь более совершенный инструментарий для исследования полученных решений. Новейшие компьютерные технологии дают возможность анализа поставленных задач или исследования полученных решений, но при условии, что такой инструментарий создан.
Информационное общество испытывает постоянный дефицит жизнен-Шк но необходимой информации для принятия решений. Все, кто принимают ^^ решения, нуждаются в более полной информации. В этих условиях преимущество получают те, кто овладел теорией и практикой управления социально-экономической эволюцией, основанного на самоорганизации, обучении и адаптации. Темпы изменений в постиндустриальную эпоху требуют разработки специальных механизмов управления эволюцией предприятия.
Интеллектуальные технологии — один из последних этапов развития аналитических технологий, представляющие собой методики, которые на основе каких-либо моделей, алгоритмов, математических теорем позволяют по известным данным оценить значения неизвестных характеристик и параметров.
Аналитические технологии нужны в первую очередь людям, принимающим важные решения — руководителям, аналитикам, экспертам. Доход компании в большой степени определяется качеством этих решений — точностью прогнозов, оптимальностью выбранных стратегий. Наиболее распространены аналитические технологии, используемые для решения следующих задач: для прогнозирования курсов валют, цен на сырье, спроса, дохода компании, уровня безработицы, числа страховых случаев, и для оптимизации расписаний, маршрутов, плана закупок, плана инвестиций, стратегии развития. Как правило, для реальных задач бизнеса и производства не существует четких алгоритмов решения. Раньше руководители и эксперты решали такие задачи только на ос-^fe нове личного опыта. С помощью современных аналитических технологий стро-^^ ятся системы, позволяющие существенно повысить эффективность решений.
К сожалению, классические методики оказываются малоэффективными во многих практических задачах. Это связано с тем, что невозможно достаточно полно описать реальность с помощью небольшого числа параметров модели, либо расчет модели требует слишком много времени и вычислительных ресурсов.
Из-за описанных выше недостатков традиционных методик последние десять лет идет активное развитие аналитических систем нового типа. В их основе — технологии искусственного интеллекта, имитирующие природные процессы, такие как деятельность нейронов мозга или процесс естественного отбора.
Наиболее популярными и проверенными из этих технологий являются нейронные сети и генетические алгоритмы (ГА). Первые коммерческие реализации на их основе появились в 80-х годах и получили широкое распространение в развитых
странах. Нейронные сети в каком-то смысле являются имитациями мозга, поэтому с их помощью успешно решаются разнообразные «нечеткие» задачи — распознавание образов, речи, рукописного текста, выявление закономерностей, классификация, прогнозирование. В таких задачах, где традиционные технологии бессильны, нейронные сети часто выступают как единственная эффективная методика решения.
Генетические алгоритмы — это специальная технология для поиска оптимальных решений, которая успешно применяется в различных областях науки и бизнеса. В этих алгоритмах используется идея естественного отбора среди живых организмов в природе, поэтому они называются генетическими. Генетические алгоритмы часто применяются совместно с нейронными сетями, позволяя создавать предельно гибкие, быстрые и эффективные инструменты анализа данных.
Наверное, самым впечатляющим у человеческого интеллекта являетл^ способность принимать правильные решения в условиях неполной и нечеплв информации. Построение моделей приближенных размышлений человека и использование их в компьютерных системах представляет сегодня одну из важнейших проблем науки. Для создания действительно интеллектуальных систем, способных адекватно взаимодействовать с человеком, был создан новый математический аппарат нечеткой логики, который переводит неоднозначные жизненные утверждения в язык четких и формальных математических формул.
При создании автоматизированной системы принятия решений при управлении предприятием важным является вопрос о нахождении адекватных математических моделей принятия решений. Крупным шагом в развитии систем принятия решений явилось применение теории нечетких множеств, нейронных сетей, генетических алгоритмов. Считается, что решение принимается в условиях риска, характеризуется некоторым классом оптимальных стратегий, которые имеют разные степени риска.
Взаимодействие естественного и искусственного интеллекта в процедурах принятия решений через информационные объекты по критериям максимальной эффективности может быть закодировано сложными инструментальными методами. В связи с этим, применение математической теории интеллектуальных систем для повышения эффективности организации общественного производства является крайне актуальной задачей.
Объектом исследования являются производственная программа предга^ ятия (ГШП), структура и организация процесса производства, прибыль, себесІ^Р мость и рентабельность, операционный денежный поток, нормирование труда, конструктивно-технологическая сложность изделий, прогнозная трудоемкость, информационно-коммуникационные технологии (ИКТ), диффузия инноваций, макроэкономические индикаторы, ценовая дискриминация, контрактация, контрагенты, интеллектуальные системы, классические оптимизационные методы.
Предметом исследования являются математические модели оптимизации 111111, двойственные оценки используемых ресурсов и производственных мощностей, информационная система процесса производства, оперативное управление, критерий оптимальности долгосрочного управления компанией, мониторинг стоимости и оценки принимаемых решений, интеллектуальные алгоритмы для решения задачи прогнозирования трудоемкости, долгосрочное прогнозирование внедрения ИТК, кластеризация контрагентов как инструмент формализации управленческих
5 '
решений, гибридный генетический алгоритм с элитным обучением лидера.
Цель работы состоит в получении научно-обоснованных экономических решений, направленных на создание математических моделей оптимизации планирования производственной программы предприятий и интеллектуальных информационных технологий, построенных на основе разработки гибридных алгоритмов, базирующихся на теории нечеткой логики, нейронных сетей и деревьев решений, для решения задач динамического стратегического планирования развития крупномасштабных игокиниринговых проектов, автоматизации оценки трудоемкости производства изделий на стадии конструкторской подготовки производства и выбора контрагентов как инструмента формализации управленческих решений, что будет способствовать развитию теории и расширению практики управления социально-экономической эволюцией предприятия, повышению производительности (Л труда и эффективности путей организации производства.
Для реализации поставленной цели необходимо решить следующие задачи:
построить ряд математических моделей оптимизации показателей хозяйственной деятельности предприятий машиностроения с учетом специфики производства и создание пакета программ для их реализации;
применить однокритсриальные линейные модели, использующие критерии максимума прибыли, получаемой от реализации продукции, и максимума объема производства, а также нелинейные многокритериальные модели с линейными и дробно-линейными целевыми функциями и создать алгоритмы их решения;
осуществить выбор модели управления долгосрочным развитием промышленной компании с серийным или массовым производством, действующей на конкурентном рынке, которая, кроме планирования развития компании, должна позволять проводить её мониторинг стоимости;
определить удобный инструментарий для построения целевой функции деятельности компании, представляющей комбинацию многокритериальной теории полезности и управленческих эквивалентов теории заинтересованных сторон;
разработать методику долгосрочного прогнозирования темпов внедрения инфокоммуникационных технологий (ИКТ) как диффузии инноваций; исследовать
' значимость ИКТ как важного фактора формирования эффективной инфраструкту-^^ ры рынков, включая встраивание российских предприятий в технологические це-^Р почки глобальной экономики;
вывести математическую модель оценки определения прогноза динамики инноваций (ДИ), зависящей от макро- и микроэкономических индикаторов, подверженных аддитивным многомерным случайным возмущениям, имеющим место в экономике переходного периода;
построить на основе теории конструкторско-технологичёской сложности изделий адаптивную нечеткую модель для определения прогнозной трудоемкости их изготовления и построения информационной системы для прогнозирования нормирования труда;
провести структурную адаптацию системы нечеткого вывода путем генерации базы нечетких правил, обладающей полнотой покрытия правилами всех примеров из обучающей выборки деталей изделия, и параметрическую адаптацию на основе настройки форм функций принадлежности нечеткой системы;
конкретизировать модель нечеткой кластеризации контрагентов, позволяющей использовать в качестве элементов признакового пространства контрагентов, подлежащих кластеризации, неколичественные переменные; сформулировать в экономико-правовых аспектах необходимые и достаточные условия применимости данной модели в практической деятельности;
установить соответствие определенной на основании проведенной кластеризации группы риска контрагента совокупности возможных и допустимых вариантов взаимодействия с учетом прочих характеристик контракта для применения ценовой дискриминации и осуществить процесс согласования условий возможной контрактации с контрагентом;
применить для обучения интеллектуальных систем ГА, основанные на имитации в искусственных системах некоторых свойств живой природы; провести экспери^ менты на тестовых функциях с использованием разных типов операторов скрещиваЧ иия и мутации для ГА с вещественным и бинарным кодированием для установления вида кодирования, при котором отыскание оптимума реализуется лучше и быстрее;
разработать гибридный генетический алгоритм с элитным обучением лидера, обладающего пригодностью при решении задач условной и безусловной оптимизации и решения систем нелинейных уравнений большой размерности, а также позволяющего его использовать для обучения интеллектуальных систем.
Методы исследования. В работе применялись теоретические исследования и методы вычислительного эксперимента.
Работа основана на использовании элементов теории полезности, теории игр, элементов теории, принятия решений, линейного, дробно-линейного и нелинейного программирования, теории многокритериальной оптимизации, теории заинтересованных сторон, параметрического программирования, теории реальных опционов. Использован аппарат исследования операций, теория вероятностей и математическая статистика, компьютерное моделирование.
Использовались методы теории нечетких множеств, нейронных сетей, деревьев решений, бинарного и вещественного кодирования, эволюционных и градиентных алгоритмов, системного анализа, объектно-ориентированного программирования. Использованы элементы теории распознавания образов (кластерный анализ), положения институциональной экономической теории и теории риска, .л
При исследовании диффузии инноваций применялись методы экономик связи, теории линейных дифференциальных уравнений, регрессионный анализ, а также метод наименьших квадратов с адекватной аппроксимирующей функцией, методы математического моделирования, методы современной макроэкономической теории, описательного и сравнительного анализа, а также методы теоретико-информационного моделирования процессов и систем.
При распознавании конструкторских чертежей использовались методы моделирования, анализа, синтеза и кодирования графических изображений; метод центроидной фильтрации; операторы редукции изображений на дискретный растр и их кодирование на основе цепных кодов; методы распознавания структурных элементов изображений; программные средства обработки графических изображений; технологии обработки графической информации в интеллектуальных телекоммуникационных системах.
Достоверность и обоснованность. Методы, применяемые в диссертационном исследовании, обусловливают необходимый уровень его достоверности. Основные факторы достоверности работы базируются на использовании методологии системного подхода, структурно-динамического анализа, математического моделирования экономических объектов и процессов.
В работе применены традиционные методы экономических исследований - абстракция, анализ и синтез, интроспекция и ретроспекция. Основные результаты получены с использованием истории, теории и фактологии по Изучаемой проблеме. Параметры вычисленных моделей сформированы на базе реальных данных. Результаты аналитических расчетов правильно отражают моделируемые фрагменты экономической реальности.
Вычислительный эксперимент проводился с помощью компьютерных и ин-
^^ формационных технологий, включающих современные интегрированные программные средства, на основе классических методов оптимизации и предложенных методов интерпретации математической теории шггеллектуальных систем.
Научная новизна. В результате впервые проведенных комплексных исследований получены новые экономические решения и пути построения структуры тонких экономических механизмов, позволяющих автоматизировать процесс организации и управления производством промышлешгого предприятия, наделить систему принятия управленческих решений предприятия элементами искусственного интеллекта, что, в конечном счете, будет способствовать гибкости и объективности решений руководящего звена предприятия, повышению производительности труда, конкурентоспособности, экономичности и устойчивости производства, в ходе которых:
- рассмотрены эффективные алгоритмы решения задач оптимизации показа
телей хозяйственной деятельности предприятия, построенные на основе методов
линейного, дробно-линейного и нелинейного многокритериального программиро
вания. Проанализированы устойчивость и экономическая интерпретация двойст
венных оценок, которые применяются в анализе решений оптимизационных задач
линейного программирования. Показано, что одними из наиболее эффективных
алгоритмов оптимизации производственной программы являются алгоритмы, по-
' строенные на базе методов последовательной безусловной минимизации;
- для однокритериальной линейной модели оптимизации прибыли от реа-
лизации произведенных изделий предложена схема проведения сравнительного анализа оптимальной прибыли и прибыли, получаемой при условии выполнения заказа на определенные виды изделий. Эта схема может применяться на машиностроительном предприятии, учитывая специфику его технологических процессов, при организации производства изделий определенной номенклатуры для оперативного принятия решения о выполнении поступившего заказа;
- применяя теорию двойственности линейного программирования для од-
нокритериальных моделей, рассчитаны двойственные оценки используемых ре
сурсов и производственных мощностей, что позволяет: провести анализ расхо
дов по каждому типу ресурсов; оценить остатки ресурсов и время простоя про
изводственных мощностей; оценить меру дефицитности каждого типа ресурса
для принятия решения об изменении запасов ресурсов с целью получения наи
лучшего экономического эффекта от дополнительно вложенных средств;
проведены исследования промышленных предприятий; предложена система количественных и качественных показателей, характеризующих процессы управления, необходимые для построения критерия оптимальности долгосрочного управления компанией, определена связь целевой функции долгосрочного планирования с целевой функцией оперативного управления; выявлена структура и построена целевая функция долгосрочного управления, а также установлена связь целевой функции с системой мотивации компании;
определено, что стоимость компании является основным критерием оценки ее финансового благополучия, который дает комплексное представление об эффективности управления бизнесом, так как управление стоимостью компании — это инновационный подход, приобретающий все большую популярность, а также то, что вышеупомянутый критерий в наибольшей степени удовлетворяет собственников| бизнеса и, в условиях отсутствия монополий и экстерналий, обеспечивает максимизацию социального благосостояния как компании, так и ее сотрудников;
разработана методика долгосрочного прогнозирования темпов внедрения новых технологий как ДИ, являющаяся эффективным рычагом темпов ускорения научно-технического прогресса в промышленности, где механизмы технической кооперации базируются, как правило, на устаревших информационных и компьютерных технологиях, и являются «узким» местом, сдерживающим не только разработку новых технически сложных изделий, но и международную кооперацию в этой сфере. Разработаїшая методика позволяет найти наилучшую аппроксимирующую логистическую кривую, которую можно затем использовать для прогноза ДИ;
полученная в работе кривая прогноза позволяет оценить сроки получения доступа хозяйствующих субъектов РФ к технологиям международного «электронного рынка», на котором поставщики «интеллектуальной продукщш» выстроены в технологические цепочки, при этом их тесное взаимодействие обеспечивается в рамках вертикальной интеграции, где все звенья связаны в единую компьютерную систему, в рамках которой и реализуется рыночный механизм: на конкурентной основе распределяются заказы, а звенья кооперируются в технологические цепочки для их выполнения. Реструктуризация предприятия в рамках вертикальной интеграции ведет к заметным сдвигам в производителыюсти и эффективности организации производства;
решена задача разработки оценок точности определения прогноза ДИ в усі ловиях формирования цивилизованных рыночных отношений, оценок его достоверности, построение математической модели для экономического индикатора ДИ, позволяющей количественно указывать, как влияют на точность прогноза девиация различных микро- и макроэкономических индикаторов. При решении этих задач учитывался случайный характер возмущений, вызванных несовершенством действия рычагов государственного регулирования и стихийностью гипертрофированного рынка, что пагубно влияет на направление изменения большинства экономических индикаторов. Тем более что в последнее время наблюдается тенденция повышения влияния случайной составляющей возмущений на эти индикаторы и уменьшения влияния детерминированных воздействий;
созданы системы нормирования труда, построенные на теории нечетких деревьев решений, в которых генерация правил и подбор параметров функций принадлежности ведутся в процессе обучения по имеющимся данным. Посколь-
ку при обучении нечеткой системы используются генетические алгоритмы оптимизации, то такая система является генетической нечеткой системой или адаптивной системой нечеткого вывода с генетическим алгоритмом обучения;
- впервые предложено использовать аппарат нечетких деревьев решений
для определения прогнозной трудоемкости машиностроительных деталей на
стадии конструкторской подготовки производства. Это позволило оперативно
оценивать нормы времени на изготовление изделий без проектирования техноло
гического процесса, что дало возможность снизить затраты на процесс нормиро
вания и принять обоснованное решение по выпуску нового изделия. На примере
деталей зубчатого класса построена адаптивная нечеткая модель для прогнози
рования трудоемкости их изготовления. Средняя относительная ошибка нечетко-
^шо прогноза составила 5,2%, что приемлемо на стадии предварительной оценки;
предложена методика согласования условий возможной контрактации с контрагентом на основе выявленной совокупности возможных и допустимых вариантов взаимодействия обеих сторон контракта в соответствии с проведенной кластеризацией групп риска контрагента. Применение в практической деятельности предложенной методики формализации принятия управленческих решений в области ценообразования в части осуществления ценовой дискриминации, основанной на модели нечеткой кластеризации контрагентов, позволит производить выбор типа контрактации и осуществлять ценовую дискриминацию с учетом риска взаимодействия с данным хозяйствующим субъектом;
предложена модель нечеткой кластеризации контрагентов при принятии решений ценовой дискримішации на основе формальных критериев, которая дополнена блоком динамической корректировки, позволяющим адаптировать данную модель к высокому уровню изменчивости российской экономической среды, и, как следствие, характеристик функционирования субъектов хозяйственной деятельности;
для обучения интеллектуальных систем, каковыми являются социально-экономические системы, использованы ГЛ, основанные на имитации в искусственных системах некоторых свойств живой природы: естественного отбора, приспособляемости к изменяющимся условиям среды, наследования потомками
^-жизненно важных свойств от родителей. Сильной стороной ГА является их І^Рспособность решать многоэкстремальные задачи без наложения условий на вид оптимизируемой функции (отсутствуют требования непрерывности самой функции и ее производных). Однако достижения глобального экстремума ГА не гарантируют. Считается, что отыскивается сравнительно «хорошее» решение. Важным достоинством ГА является то, что для них не важно начальное приближение. ГА показал высокую эффективность при решении многих задач: обучение нейронных сетей, обучение нечетких систем, решение вариационных задач и оптимальное управление сложными системами;
- разработан гибридный генетический алгоритм с элитным обучением ли
дера, показавший пригодность при решении широкого класса задач: условной и
безусловной оптимизации, решения систем нелинейных уравнений большой
размерности. Его свойства дают основание рекомендовать метод для обучения
интеллектуальных систем. Применение генетического алгоритма с веществен
ным кодированием с новыми операторами скрещивания для дополнительного
с
обучения нечеткой системы прогнозирования трудозатрат на производство машиностроительных изделий уменьшило ошибку с 5,2% до 4,4%.
Практическая ценность работы. С использованием описанных в данной работе математических моделей оптимизации и алгоритмов создана информационная система производства машиностроительного предприятия, которая позволяет упорядочить все ресурсные потоки внутри предприятия, систематизировать внутреннюю и внешнюю информацию, оперативно реагировать на изменения хранимых данных, оптимизировать процесс планирования производственной программы. Разработанные алгоритмы и пакеты программ могут служить основой для планирования выпуска изделий на предприятии в рамках тактического планирования и оперативного управления.
В работе при определении стратегии оптимального управления долго^ срочным развитием предприятия выявлена логика инвестиционных процессов Согласно ей, основную роль при выборе объекта инвестирования играет такая категория, как «инвестиционная привлекательность предприятия» (ИПП). Показано, что инвестирование - процесс не с гарантированным, а с вероятностным результатом. Выявлена институциональная природа категории ИПП, а процедура оценки ИПП регулируется определенными нормами и правилами. При этом вся совокупность оценочных институтов подразделяется на две большие группы. Институт национального права — это, своего рода, метаинсти-тут, то есть институт формальных институтов. Институт фондового рынка представляет собой систему норм и правил, регулирующих механизм организованной торговли корпоративными ценными бумагами.
Применение методики долгосрочного прогнозирования может предотвратить существенные финансовые потери вследствие неоптимальпых темпов развития национальной информационной штфраструктуры ИКТ. Установлено, что опережающее развитие в России сектора услуг и производства «интеллектуальной» продукции, основанных на ИКТ, внесет существенный вклад в экономический рост, повысит производительность в производственных отраслях и обеспечит более полную занятость квалифицированных слоев населения. Это, по существу, самый эффективный путь интеграции России в постиндустриальную глобальную экономику, поскольку он учитывает конкурентные преимущества России - относительно высоюЛ образовательный и культурный уровень населения. Именно на основе ИКТ стансе вится возможным придать экономическому росту новое качество, поскольку его основной движущей силой в этих условиях должны стать «инновации» и «человеческий капитал», на основе которых удастся компенсировать резкое сокращение численности трудоспособного населения России в ближайшее десятилетие. Этому будет способствовать и значимость ИКТ как важного фактора формирования эффективной инфраструктуры рынков, включая встраивание российских предприятий в технологические цепочки глобальной экономики.
В работе использован эффективный подход к созданию автоматизированного метода нормирования, использующего теорию конструктивно-технологической сложности изделий, как некоторой функции, зависящей только от свойств изделия — совокупности геометрических, конструктивных и технологи-' ческих признаков. Такой метод нормирования основан на построении линейной
регрессионной зависимости сложности от трудоемкости, а коэффициенты регрессии получаются различными для каждого исследуемого объекта и учитывают факторы, не связанные со сложностью изделий, но влияющие на трудоемкость: используемое оборудование, квалификация работников, условия труда и другие показатели организационно-технического уровня производства.
Предложенные неформальные критерии ценовой дискриминации возможно использовать в целях принятия адекватных управленческих решений в области ценообразования. Уточненная в работе модель и предложенная методика носят универсальный характер и могут быть использованы с учетом выполнимости необходимых и достаточных условий различными хозяйствующими субъектами, специфика функционирования которых предполагает целесообразность использования ими дифференцированного ценообразования.
Реализация работы в производственных условиях. Положения, разработки и рекомендации диссертационной работы внедрены на ряде предприятий: ФГУП «НЛП «КВАНТ» (г. Москва), ОАО «Ижмаш», ОАО «Ижевский Радиозавод» (г. Ижевск), Самарского филиала ОАО «ВолгаТелеком» (Самарский филиал ОАО «ВолгаТелеком», г. Самара), Тульский филиал ОАО «ЦентрТелеком» (г. Тула) и др.
Апробация работы. Отдельные законченные этапы работы обсуждались на Международной научной конференции «Проблемы экономики переходного периода» (Москва, 1993); Механизмы финансовых рынков высшей квалификации (США, Нью-Йорк, 1994), Международном симпозиуме «Экономическое сотрудничество на уровне субъектов федеративных государств» (Испания, Барселона, 1994); Международном семинаре «Проблемы привлечения инвестиций для реализации программы ООН по химическому разоружению» (Германия, Берлин, 1996); Международном Самарском симпозиуме телекоммуникаций для руководящих работников отрасли связи (1996- 2004); Международной НТК «Информационные технологии в инновационных проектах» (Ижевск, 1999-2004); Научно-технических конференциях ИжГТУ (Ижевск, 1991-2004); The 5th International congress on mathematical modelling (Dubna, 2002); Международной НТК, посвящ. 50-летию ИжГТУ (Ижевск, 2002); 31-й Международной конференции «Информационные технологии в науке, образова-іпіи, телекоммуникациях и бизнесе» (Украина, Крым, Ялта — Гурзуф, 2004); 6-м Международном конгрессе по мат. моделированию (ННовгород, 2004); 31-32 Международной конференции «Информационные технологии в науке, социологии, экономике и бизнесе» (Украина, Крым, Ялта-Гурзуф, 2004-2005); IX Европейском конгрессе «Математическое моделирование технико-экономических проблем в нефтегазовой отрасли» (Франция, Канны, 2005); Научной практической конференции «Экономические аспекты научно-технического сотрудничества предприятий и организаций Сирии и России» (Сирия, Дамаск, 2005); Всероссийской НТК «Компьютерные и информационные технологии в пауке, инженерии и управлении» (Таганрог, 2005-2006); X Международной конференции Российской научной школы «Инноватика-2005» (Сочи, 2005); Международной НТК «Искусственный интеллект» (п. Дивноморское, Кацивели, 2005-2006); Всероссийской НПК «Социально-экономическое развитие России в XXI веке» (Пенза, 2006); XVII Международной НТК «Математические методы и информационные технологии в экономике, социологии и образовании» (Пенза, 2006); IV Международной НПК «Теория и прак-
тика антикризисного менеджмента» (Пенза, 2006); V Всероссийская НІЖ «Проблемы и перспективы российской экономики» (Пенза, 2006).
Публикации. Основные научные результаты по теме диссертации опубликованы в 64 научных работах, в том числе 16 монографий и учебных пособий (общим объемом 224,77 п.л.). Автор имеет 29 научных трудов в изданиях, выпускаемых в РФ и рекомендуемых ВАКом для публикации основных результатов диссертаций на соискание ученой степени доктора наук.
Структура диссертационной работы определяется общими замыслом и логикой проведения исследований. Диссертация содержит введение, 6 глав и заключение, изложенные на 373 с. машинописного текста. В работу включены 96 рис., 44 табл., список литературы из 396 наименований.