Содержание к диссертации
Введение
1. Модель износа поверхности раздела волокно/матрица в процессе разрушения композита
Введение 18
Постановка задачи 20
Нахождение нормальных усилий на границе раздела волокно/матрица 22
Получение общего интегрального уравнения для нормальных усилий 25
Определение граничных и начальных условий 29
Выводы 29
Приложение А 33
2. Оценка влияния свойств поверхности раздела волокно/матрица на энергию разрушения композита
Введение 36
Модель разрушения материала 37
Распределение напряжений в волокнах и вероятных мест разрыва волокон 40
Оценка энергии разрушения 47
Выводы 49
Приложение Б 52
3. Модель поведения слабой поверхности раздела волокно/матрица при циклическом нагружении материала
Введение 65
Модель ослабления поверхности контакта волокно/матрица ..65
Интерпретация экспериментальных данных
Сравнение теоретической модели циклической усталости материала с экспериментальными данными 76
Выводы
Приложение
Заключение
Список литературы
- Нахождение нормальных усилий на границе раздела волокно/матрица
- Модель разрушения материала
- Модель ослабления поверхности контакта волокно/матрица
- Сравнение теоретической модели циклической усталости материала с экспериментальными данными
Введение к работе
В числе задач современной механики композитов важное место занимает проблема трещиностойкости и сопротивления ползучести материалов, предназначенных для работы в агрессивных средах при высоких температурах. Изыскания в области создания таких материалов требуют построения моделей поведения систем, состоящих из хрупких компонентов. Устойчивость к образованию и распространению трещины, для изучаемых в работе однонаправленных волокнистых композитов с хрупким волокном и хрупкой матрицей требует для своего достижения построения моделей множества процессов. Первоначальный подход к моделированию распространения трещины в таком материале заключался в том, что трещина считалась разрушающей лишь матрицу композита, не повреждая волокна, которые продолжали стягивать берега трещины. Это явление получило название бриджинга (bridging), а модель, описывающая распределение напряжений в волокне и матрице при таком процессе, - "shear-lag theory". Эта модель, развитая в работах Авестона и др. [1], подразумевает, что волокно удерживается в матрице только силами трения, не превосходящими определённую величину rs..
Учёт всех этих нюансов позволяет построить модель поведения материала весьма точно совпадающую с экспериментальными данными (рис. 2). Дальнейшее развитие ВНЕ модели включает, во-первых, уточнение процессов происходящих в поверхности раздела волокно/матрица. В рассмотренных работах подразумевалось два состояния поверхности: сцепленное волокно и матрица и наличие расслоения между ними. Следующим шагом очевидно должен был стать учёт сложности процессов происходящих в поверхности раздела. Однако это сильно осложняется тем фактом, что практически невозможно исследовать эти процессы в отрыве от всех остальных, происходящих в материале. Тест на вытягивание волокна и испытания миникомпозита, упомянутые выше, дают сильные погрешности, разработанный позднее и широко применяющийся сейчас тест на вдавливание волокна [25,26] также не свободен от этих недостатков. В данный момент существуют разработки специальных тестов границы раздела двух сред [27], но они ещё не имеют широкого распространения. В работе [28] сделаны достаточно оригинальные подходы к моделированию поведения цилиндрического миникомпозита, не получившие однако в дальнейшем развития.
Кроме проблемы экспериментального определения свойств поверхности раздела волокно/матрица, следует упомянуть вопрос передачи напряжений через поверхность раздела при наличии разрывов в волокне (волокна конечной длины) или трещин в матрице. Одним из способов экспериментально/ теоретического представления передачи нагрузок через поверхность раздела является тест на разрыв одиночного волокна в массиве матрицы [29,30,31,32,33]. Изначально данный тест использовался преимущественно для определения поведения волокна в матрице, и многие подходы к анализу напряжённо/деформированного состояния такого рода образца подразумевали идеальное сцепление волокна и матрицы [34-43]. Однако подобный анализ достаточно бессмысленней для определения свойств неидеальной поверхности раздела волокно/матрица. В целях такого исследования вводят дополнительный параметр поверхности раздела - скачок перемещений при переходе через поверхность. Такой подход был осуществлён в работах [44,45] для плоского случая (пластинчатый материал), и в работе [46,47,48] для волокнистого композита.
В работах Гао [49] и Сигила [50] разработана модель трения в поверхности раздела волокно/матрица и сделана попытка учёта влияния сжимающих нормальных напряжений в поверхности раздела. В работе [51] напротив учтена возможность наличия растягивающих нормальных напряжений и соответственно отсутствия трения между волокном и матрицей. Эти подходы были объединены Хатчинсоном [52]. Им была построена и всесторонне исследована поведения волокна при вытягивании из матрицы. Были учтены изначальные напряжения при создании композита и температурные напряжения. Предполагаемое наличие значимых поперечных нормальных напряжений приводит к необходимости построения граничных условий для цилиндрического миникомпозита, который рассматривается в перечисленных работах. Хатчинсоном построены два вида граничных условий: для свободного миникомпозита и для ячейки внутри макроматериала. Был всесторонне исследован процесс вытягивания волокна из матрицы с обрывом волокна (рис. 3), в том числе рассмотрены различные варианты как установившихся, так и неустановившихся процессов отслоения и вытягивания волокна и различные варианты их сочетаний. Так же важным в этом свете вопросом является распределение дефектов в волокне определение прочности волокна как случайной величины (то что было отнесено в перечисленных выше работах Куртина к матрице). Это является основополагающим при определении граничных условий вытягивания оборванного волокна из матрицы и наиболее полно представлено в работах [97,98]. Рис, 3. Различные варианты развития процесса вытягивания волокна из матрицы. Зависимость смещения кончика волокна (ось абсцисс) от нагрузки на волокно(ось ординат).
Для описания процессов разрушения композитных материалов, сопровождающихся расслоением волокна и матрицы крайне важно иметь подробное представление об этом процессе также на микроуровне. Определение энергии адгезии двух сред, и напряжённого состояния, сопровождающего их расслоение, является нетривиальной задачей. Некоторые подходы к разрушению однородной среды могут быть распространены и на расслоение двух сред [65-69]. Среди них образование зоны пластичности, затупление трещины, построение кривых податливости [70] (рис.4). Рис. 4. Три механизма расслоения двух сред. I — трещина с острым кончиком, II - трещина с затупленным кончиком, III — наличие трещиноподобных включений в поверхности раздела сред. Индекс-адгезии rw / Г0 в первых двух случаях относится к установившемуся процессу расслоения, а в третьем случае Г, /Г„ - началу процесса. DBT-обозначение момента перехода трещины из раздела сред в массив одной из них. При изучении процесса расслоения возникают как трудности экспериментального характера, так и теоретического. Первые стандартны для экспериментов механики разрушения, вторые связаны со сложностью перехода от атомного масштаба (химического взаимодействия соединённых сред) к механике сплошной среды. Кроме стандартных ограничений возникаю так же особенности связанные с тем, что реальные поверхности контакта двух материалов, часто накладывают существенные ограничения на форму образцов [74-77] (затруднения связанные именно с волокнистыми композитами были описаны выше). Если контакт между материалами может быть получен простыми методами (диффузии или спекания), существует множество видов образцов, пригодных для испытаний и разработанных ещё для гомогенных материалов [78-80]. Хотя всё равно возникает необходимость учёта возникновения остаточных напряжений, возникающих при формировании образца, и их влияния на энергию адгезии [81,82]. Если одна из сред может быть получена только в виде плёнки, то существуют два основных подхода к измерениям. При первом подходе плёнка отделяется под нагрузкой от образца, измерению подлежит зависимость перемещений от нагрузки [83-85]. При втором, в наборе образцов создаются разные остаточные напряжения, и прослеживается степень отслоения плёнки от подложки [86-88]. Основной массив количественных данных о сцеплении разнообразных материалов, которые могут быть использованы для подбора покрытий, формирующих контакт волокна с матрицей, получен при анализе металл - оксидных образцов [89-95]. Однако при этом надо учитывать особенные условия, возникающие на границе упругого и пластичного тела. Они связаны с взаимоотношением напряжений необходимых для разрыва двух сред (вычисление соответствующего критического коэффициента) с энергией рассеивающейся при пластическом течении неупругого материала. Хотя такая модель близка к используемой при описании разрушения металлов, она имеет некоторые присущие только ей особенности [71-73], например сильную зависимость от линейных размеров пластичной части (для плёнок и покрытий волокна). В данной работе будет исследовано поведение композитных материалов с монокристаллическим волокном и хрупкой матрицей, которые проходят стадию испытаний в настоящее время. Особенностью этих материалов является в первую очередь небольшая энергия разрушения. Для преодоления этой проблемы испытываются разнообразные покрытия, формирующие ослабленную поверхность контакта волокна с матрицей. Это позволяет уменьшать хрупкость композита, однако вызывает новое побочное явление: малоцикловую усталость образцов при ползучести при высоких температурах. Тема разрушения поверхности контакта волокно/матрица при циклическом нагружении не слишком широко освещена в литературе. В основном при построении соответствующей модели применяется подход, заключающийся в описании усталостной трещины, распространяющейся в поверхности раздела волокно/матрица [96]. В данной работе будет построена модель разрушения композита, опирающаяся на представление разрушения поверхности контакта в виде процесса абразивного износа. В первой главе построено определяющее соотношение, описывающее износ поверхности матрицы при сдвиге волокна относительно неё. Во второй рассмотрено влияние этого процесса на энергию разрушения материала. В третьей будет построена микроструктурная модель малоцикловой усталости материала, проведён анализ ряда экспериментов, поставленных в лабораториях ИФТТ г. Черноголовка и осуществлено сравнение экспериментальных данных, с полученной моделью.
Нахождение нормальных усилий на границе раздела волокно/матрица
В числе задач современной механики композитов важное место занимает проблема трещиностойкости и сопротивления ползучести материалов, предназначенных для работы в агрессивных средах при высоких температурах. Изыскания в области создания таких материалов требуют построения моделей поведения систем, состоящих из хрупких компонентов. Устойчивость к образованию и распространению трещины, для изучаемых в работе однонаправленных волокнистых композитов с хрупким волокном и хрупкой матрицей требует для своего достижения построения моделей множества процессов. Первоначальный подход к моделированию распространения трещины в таком материале заключался в том, что трещина считалась разрушающей лишь матрицу композита, не повреждая волокна, которые продолжали стягивать берега трещины. Это явление получило название бриджинга (bridging), а модель, описывающая распределение напряжений в волокне и матрице при таком процессе, - "shear-lag theory".
Позднее, данная модель была усовершенствована за счёт отказа от этих упрощений одновременно в работах Будянского и др. [2,3] и Маршала и др. [4,5]. Дальнейшим шагом на пути усовершенствования этой модели стала попытка учёта энергетических затрат, необходимых для отделения волокна от матрицы, чтобы начался собственно процесс проскальзывания с трением. Наличие отдельных энергозатрат на этапе достижения касательными напряжениями критической величины rs.
Вносит изменения в ВНЕ критерий на этапе определения критической нагрузки на волокно. Считается, что критическая нагрузка, необходимая для начала процесса отслоения волокна от матрицы ап больше критической нагрузки as и соответственная поправка вносится в Коэффициент интенсивности напряжений для достаточно длинных трещин (что эквивалентно энергетическим критериям прочности, рассмотренным выше) эти поправки были в окончательном виде рассмотрены Будянским Эвансом и Хатчинсоном [6], с опорой на работы предыдущих лет содержащих частичные приближения к проблеме. Например, в работах Будянского совместно с Куй [7] подробно рассмотрено влияние структуры композитного материала на критические нагрузки и коэффициенты напряжений, в работах Будянского и Амазиго [2] поведение протяжённой трещины в таком материале, в работах Суо [8] -возможные влияния упрощений подобных моделей на погрешности вычислений. Сумма этих поправок делает модель крайне громоздкой и сложной для вычисления и тем более исследования, при этом рассматривается лишь один из процессов, происходящих в материале: «бриджинг» сопровождающийся «дебондингом». Так же этому вопросу были посвящены работы [53-57].
Следующим этапом развития данной модели становится учёт влияния множества трещин расположенных в матрице керамического композита. Этот учёт весьма важен потому, что именно взаимодействие и взаиморасположение множества трещин определяют макрохарактеристики материала, в том числе кривую нагрузка-деформация.
Характерная кривая зависимости деформации материала от растягивающего напряжения в направлении волокон (рис. 1) состоит из трёх частей: сначала при увеличении нагрузки композит упруго деформируется как единое целое до достижения критической величины напряжений т. -аЛ, на которую влияют термические напряжения, возникающие за счёт разницы в модулях температурного расширения матрицы и волокна. На следующем этапе происходит образование, накопление и расширение трещин в матрице, пока не буде достигнута такая величина напряжений as, при которой трещины настолько не ослабят матрицу, что она прекратит нести какую-либо нагрузку. Далее материал ведёт себя подобно просто пучку волокон. Моделирование данного процесса позволяет более полно интерпретировать результаты экспериментов в плане определения микроструктурных свойств материала. Например, определение трения в поверхности раздела волокно/матрица, основополагающей для свойств материала величины, может быть проведено с помощью теста по вытягиванию одного волокна [9,10], либо теста на вдавливание волокна [11]. Однако эти испытания требуют специально подготовленных образцов и страдают сильными погрешностями. Позднее были разработаны методы определения свойств границы раздела через раскрытие трещины образца при растяжении [12,13,14] и методы испытаний одно-волоконного мини композита [15,16]. Точные аналитические модели поведения одно-волоконного композита были построены Хуи [17] и Куртиным [18]. Однако эти методы лишь частично свободны от недостатков упомянутых выше.
Модель разрушения материала
Необходимый анализ взаимодействия трещин в образце и учёт статистического характера их расположения был проделан Спирингом и Зоком [19, 20]. Ими был произведён учёт взаимодействия трещин на плотность энергии необходимой для образования трещины и проведено численное моделирование процесса роста трещины при условии случайного расположения других трещин. Подобный анализ, использующий трёхпараметрическое Вейбуллово распределение начальных дефектов в матрице, так же сделали Янг и Новелз [21]. Наиболее полный и подробный разбор всех тонкостей при образовании и взаимодействии трещин был сделан Куртиным [22, 18, 23]. Им были учтены, в отличие от предыдущих работ (например, в работах Жу [24], Ваганини [13], Прайса [12] трещины считаются расположенными через равные промежутки), все варианты взаимного расположения трещин и вытекающие из них влияние полей напряжений в матрице друг на друга.
Учёт всех этих нюансов позволяет построить модель поведения материала весьма точно совпадающую с экспериментальными данными (рис. 2). Дальнейшее развитие ВНЕ модели включает, во-первых, уточнение процессов происходящих в поверхности раздела волокно/матрица. В рассмотренных работах подразумевалось два состояния поверхности: сцепленное волокно и матрица и наличие расслоения между ними. Следующим шагом очевидно должен был стать учёт сложности процессов происходящих в поверхности раздела. Однако это сильно осложняется тем фактом, что практически невозможно исследовать эти процессы в отрыве от всех остальных, происходящих в материале. Тест на вытягивание волокна и испытания миникомпозита, упомянутые выше, дают сильные погрешности, разработанный позднее и широко применяющийся сейчас тест на вдавливание волокна [25,26] также не свободен от этих недостатков. В данный момент существуют разработки специальных тестов границы раздела двух сред [27], но они ещё не имеют широкого распространения. В работе [28] сделаны достаточно оригинальные подходы к моделированию поведения цилиндрического миникомпозита, не получившие однако в дальнейшем развития.
Кроме проблемы экспериментального определения свойств поверхности раздела волокно/матрица, следует упомянуть вопрос передачи напряжений через поверхность раздела при наличии разрывов в волокне (волокна конечной длины) или трещин в матрице. Одним из способов экспериментально/ теоретического представления передачи нагрузок через поверхность раздела является тест на разрыв одиночного волокна в массиве матрицы [29,30,31,32,33]. Изначально данный тест использовался преимущественно для определения поведения волокна в матрице, и многие подходы к анализу напряжённо/деформированного состояния такого рода образца подразумевали идеальное сцепление волокна и матрицы [34-43]. Однако подобный анализ достаточно бессмысленней для определения свойств неидеальной поверхности раздела волокно/матрица. В целях такого исследования вводят дополнительный параметр поверхности раздела - скачок перемещений при переходе через поверхность. Такой подход был осуществлён в работах [44,45] для плоского случая (пластинчатый материал), и в работе [46,47,48] для волокнистого композита.
В работах Гао [49] и Сигила [50] разработана модель трения в поверхности раздела волокно/матрица и сделана попытка учёта влияния сжимающих нормальных напряжений в поверхности раздела. В работе [51] напротив учтена возможность наличия растягивающих нормальных напряжений и соответственно отсутствия трения между волокном и матрицей. Эти подходы были объединены Хатчинсоном [52]. Им была построена и всесторонне исследована поведения волокна при вытягивании из матрицы. Были учтены изначальные напряжения при создании композита и температурные напряжения. Предполагаемое наличие значимых поперечных нормальных напряжений приводит к необходимости построения граничных условий для цилиндрического миникомпозита, который рассматривается в перечисленных работах. Хатчинсоном построены два вида граничных условий: для свободного миникомпозита и для ячейки внутри макроматериала. Был всесторонне исследован процесс вытягивания волокна из матрицы с обрывом волокна (рис. 3), в том числе рассмотрены различные варианты как установившихся, так и неустановившихся процессов отслоения и вытягивания волокна и различные варианты их сочетаний.
Модель ослабления поверхности контакта волокно/матрица
Так же важным в этом свете вопросом является распределение дефектов в волокне определение прочности волокна как случайной величины (то что было отнесено в перечисленных выше работах Куртина к матрице). Это является основополагающим при определении граничных условий вытягивания оборванного волокна из матрицы и наиболее полно представлено в работах [97,98]. Рис, 3. Различные варианты развития процесса вытягивания волокна из матрицы. Зависимость смещения кончика волокна (ось абсцисс) от нагрузки на волокно(ось ординат).
Для описания процессов разрушения композитных материалов, сопровождающихся расслоением волокна и матрицы крайне важно иметь подробное представление об этом процессе также на микроуровне. Определение энергии адгезии двух сред, и напряжённого состояния, сопровождающего их расслоение, является нетривиальной задачей. Некоторые подходы к разрушению однородной среды могут быть распространены и на расслоение двух сред [65-69]. Среди них образование зоны пластичности, затупление трещины, построение кривых податливости [70] (рис.4). Рис. 4. Три механизма расслоения двух сред. I — трещина с острым кончиком, II - трещина с затупленным кончиком, III — наличие трещиноподобных включений в поверхности раздела сред. Индекс-адгезии rw / Г0 в первых двух случаях относится к установившемуся процессу расслоения, а в третьем случае Г, /Г„ - началу процесса. DBT-обозначение момента перехода трещины из раздела сред в массив одной из них. При изучении процесса расслоения возникают как трудности экспериментального характера, так и теоретического. Первые стандартны для экспериментов механики разрушения, вторые связаны со сложностью перехода от атомного масштаба (химического взаимодействия соединённых сред) к механике сплошной среды. Кроме стандартных ограничений возникаю так же особенности связанные с тем, что реальные поверхности контакта двух материалов, часто накладывают существенные ограничения на форму образцов [74-77] (затруднения связанные именно с волокнистыми композитами были описаны выше). Если контакт между материалами может быть получен простыми методами (диффузии или спекания), существует множество видов образцов, пригодных для испытаний и разработанных ещё для гомогенных материалов [78-80]. Хотя всё равно возникает необходимость учёта возникновения остаточных напряжений, возникающих при формировании образца, и их влияния на энергию адгезии [81,82]. Если одна из сред может быть получена только в виде плёнки, то существуют два основных подхода к измерениям. При первом подходе плёнка отделяется под нагрузкой от образца, измерению подлежит зависимость перемещений от нагрузки [83-85]. При втором, в наборе образцов создаются разные остаточные напряжения, и прослеживается степень отслоения плёнки от подложки [86-88]. Основной массив количественных данных о сцеплении разнообразных материалов, которые могут быть использованы для подбора покрытий, формирующих контакт волокна с матрицей, получен при анализе металл - оксидных образцов [89-95]. Однако при этом надо учитывать особенные условия, возникающие на границе упругого и пластичного тела. Они связаны с взаимоотношением напряжений необходимых для разрыва двух сред (вычисление соответствующего критического коэффициента) с энергией рассеивающейся при пластическом течении неупругого материала. Хотя такая модель близка к используемой при описании разрушения металлов, она имеет некоторые присущие только ей особенности [71-73], например сильную зависимость от линейных размеров пластичной части (для плёнок и покрытий волокна). В данной работе будет исследовано поведение композитных материалов с монокристаллическим волокном и хрупкой матрицей, которые проходят стадию испытаний в настоящее время. Особенностью этих материалов является в первую очередь небольшая энергия разрушения. Для преодоления этой проблемы испытываются разнообразные покрытия, формирующие ослабленную поверхность контакта волокна с матрицей. Это позволяет уменьшать хрупкость композита, однако вызывает новое побочное явление: малоцикловую усталость образцов при ползучести при высоких температурах. Тема разрушения поверхности контакта волокно/матрица при циклическом нагружении не слишком широко освещена в литературе. В основном при построении соответствующей модели применяется подход, заключающийся в описании усталостной трещины, распространяющейся в поверхности раздела волокно/матрица [96]. В данной работе будет построена модель разрушения композита, опирающаяся на представление разрушения поверхности контакта в виде процесса абразивного износа. В первой главе построено определяющее соотношение, описывающее износ поверхности матрицы при сдвиге волокна относительно неё. Во второй рассмотрено влияние этого процесса на энергию разрушения материала. В третьей будет построена микроструктурная модель малоцикловой усталости материала, проведён анализ ряда экспериментов, поставленных в лабораториях ИФТТ г. Черноголовка и осуществлено сравнение экспериментальных данных, с полученной моделью.
Сравнение теоретической модели циклической усталости материала с экспериментальными данными
Теперь если мы рассмотрим численное решение системы (3.2), то мы можем построить модель деградации границы раздела волокно/матрица в композите исходя из предпосылок внутреннего строения материала.
Если связать износ поверхности матрица с коэффициентом сплошности поверхности раздела линейным соотношением (3.11), то для диапазона напряжений внутри рассмотренного образца получим зависимость коэффициента сплошности от напряжения и номера цикла, представленную на рис. 28. Она достаточно хорошо согласуется с экспериментальной для диапазона напряжений а 0.5 ттах, и сильно отличается для а 0.5a-max. Однако надо помнить, что экспериментальные результаты для этого диапазона получены линейной экстраполяцией, и поэтому они вероятно малодостоверны. Р Д
Сравнение аппроксимированной зависимости сплошности поверхности раздела в участке образца аІ685 от удалённости участка от центральной плоскости на разных циклах нагружения с полученными ранее числовыми данными (чёрные точки на графике). Коэффициент сплошности «
Теоретическая зависимость сплошности поверхности раздела от напряжения, на разных циклах нагружения в соответствии с моделью абразивного износа в поверхности контакта волокно/матрица.
Проблема малоцикловой усталости композитных материалов со специальными покрытиями волокна в последнее время привлекает много внимания специалистов, так как это явление, наряду с техническими сложностями получения термостойких волокон и малой энергией разрушения таких материалов, является главным препятствием на пути увеличения их температуры эксплуатации. Основным подходом к описанию циклической деградации границы раздела волокно/матрица является моделирование распространения в поверхности раздела усталостной трещины, описываемой формулой Париса. Однако такая модель, во-первых, не даёт представления о микроструктурных механизмах этого явления, являясь скорее феноменологической, во-вторых, сама модель изначально относится к циклической усталости металлов, связанной с принципиально иным кругом явлений и масштабов циклических деформаций.
Проблема малоцикловой усталости композитных материалов из хрупких компонентов с ослабленной границей волокно/матрица сравнительно недавно получила известность благодаря получению и исследованию новых материалов. При этом теоретическая модель этого явления развита весьма слабо. С другой стороны ряд феноменов, связанных с разрушением таких материалов (отслоение волокна от матрицы, растрескивание матрицы, вытягивание волокон из матрицы) исследован достаточно глубоко. Но главный вопрос: «Каковы оптимальные свойства волокна, матрицы и поверхности их контакта для энергии разрушения материала?» зачастую остаётся без ответа. В данной работе по мере возможностей был дан ответ на этот вопрос и построена модель малоцикловой усталости материала. Эти два феномена особо интересны при одновременном рассмотрении, потому что определяет их протекание единый источник: статистические свойства прочности волокна и свойства поверхности контакта волокна и матрицы. С одной стороны, существуют оптимальные с точки зрения разрушения материала свойства волокна и матрицы, с другой стороны - эти параметры могут быть не выгодны с точки зрения малоцикловой усталости (что и было обнаружено в экспериментах). Поиск такого сочетания свойств материала, которое даст необходимое качество композита, очень трудоёмок без одновременного рассмотрения этих процессов, которое и было осуществлено в представленной работе.