Электронная библиотека диссертаций и авторефератов России
dslib.net
Библиотека диссертаций
Навигация
Каталог диссертаций России
Англоязычные диссертации
Диссертации бесплатно
Предстоящие защиты
Рецензии на автореферат
Отчисления авторам
Мой кабинет
Заказы: забрать, оплатить
Мой личный счет
Мой профиль
Мой авторский профиль
Подписки на рассылки



расширенный поиск

Развитие моделей поведения ядерного топлива в условиях повышенного выгорания, переходных режимов и при пенальном контроле герметичности оболочек твэлов Зборовский, Вадим Гарольдович

Диссертация - 480 руб., доставка 10 минут, круглосуточно, без выходных и праздников

Автореферат - бесплатно, доставка 10 минут, круглосуточно, без выходных и праздников

Зборовский, Вадим Гарольдович. Развитие моделей поведения ядерного топлива в условиях повышенного выгорания, переходных режимов и при пенальном контроле герметичности оболочек твэлов : диссертация ... кандидата физико-математических наук : 05.13.18 / Зборовский Вадим Гарольдович; [Место защиты: Нац. исслед. ядерный ун-т].- Троицк, 2012.- 144 с.: ил. РГБ ОД, 61 13-1/233

Введение к работе

Актуальность работы. В настоящее время основными требованиями к объектам атомной энергетики является обеспечение их безопасности и в то же время экономической рентабельности. При анализе безопасности атомных электростанций применяется концепция физических барьеров [1], к которым относятся: топливная матрица, оболочка тепловыделяющего элемента (твэла), граница контура теплоносителя реактора, контейнмент реакторной установки. Процессы, происходящие в ядерном топливе, реакторных установках и всей АЭС являются достаточно сложными и взаимосвязанными, поэтому для их описания привлекаются компьютерные коды.

В России и за рубежом проводятся работы, направленные на моделирование герметичного и негерметичного ядерного топлива. Объектом моделирования является твэл, который включает в себя сердечник из обогащенного диоксида урана, оболочку из циркониевых сплавов и другие конструкционные элементы. Целью моделирования герметичного топлива является установление пределов безопасной эксплуатации твэлов. К числу лимитирующих параметров относится давление газовых продуктов деления под оболочкой твэлов и меха-

нические напряжения в оболочке при ее взаимодействии с топливной таблеткой. Для негерметичного топлива разработаны расчетные средства, решающие задачи оперативной диагностики состояния активной зоны (установление числа и характеристик разгерметизировавшихся твэлов) и прогноза активности в первом контуре АЭС при эксплуатации негерметичных твэлов.

Для увеличения эффективности использования ядерного топлива в настоящее время повышается проектное выгорание топлива, и внедряются эксплуатационные режимы с маневрированием мощностью [2]. В рамках проводимых работ является важным развитие ряда моделей. К таковым относится моделирование UO2 топлива высокого выгорания. На периферии топливных таблеток в твэлах легководных реакторов при средних по таблетке выгораниях более 40 МВтсут/кги формируется так называемая рим-структура [3,4], характеризуемая дроблением исходных зерен и значительным ростом пористости. Изменения микроструктуры влияют на теплофизические и механические свойства топлива в области рим-слоя, а также на выход активности из твэла в случае разгерметизации. Самосогласованная физическая модель процессов, определяющих формирование рим-слоя в ІЮг-топливе, до сих пор отсутствует, несмотря на развитую феноменологию данного явления [4]. Поэтому задача о получении критерия для порога формирования рим-слоя в зависимости от различных параметров топлива и условий облучения, является актуальной.

Другой важной задачей является прогнозирование выхода газовых продуктов деления (ГПД) в переходных режимах облучения топлива, когда твэлы подвергаются кратковременным (от нескольких часов до суток) повышенным тепловым нагрузкам. К механизмам, определяющим ускоренный выход ГПД из кристаллической матрицы в переходных режимах, относится рост зерен UO2 и дрейф газовых пузырьков в градиенте температуры. Несмотря на то, что в литературе имеются достаточно подробные физические представления о данных процессах, задача разработки и верификации расчетно-теоретических моделей ускоренного выхода газа под оболочку в переходных режимах остается актуальной.

Для повышения радиационной безопасности на АЭС необходимым является развитие методик контроля герметичности оболочек (КГО) твэлов на остановленном реакторе. В настоящее время для российских атомных станций разработана и внедрена усовершенствованная методика пенального КГО с цикли-рованием давления [А1,А2]. Данная методика обладает повышенной чувствительностью по сравнению со штатной методикой КГО, а измерение кинетики выноса активности дает возможность оценивать величину эффективного гидравлического диаметра дефекта в оболочке негерметичного твэла. Знание размера дефекта позволяет прогнозировать активность в первом контуре в случае загрузки негерметичной ТВС. Для обоснования новой методики было необходимым разработать расчетный код, описывающий физические процессы, которые определяют кинетику выноса активности из негерметичного твэла при пе-нальном КГО.

Таким образом, поставленные выше задачи о поведении герметичных и негерметичных твэлов являются актуальными для корректного моделирования топлива ядерных реакторов и представляют научный и практический интерес.

Целью диссертационной работы является развитие расчетно-теоретических моделей для пороговых условий формирования рим-структуры в и02-топливе и выхода газовых продуктов деления из топлива в условиях переходных режимов, а также разработка моделей и расчетного кода, описывающего вынос активности из дефектного твэла при проведении пенального КГО.

Научная новизна результатов, представленных в диссертации:

  1. Разработана расчетно-теоретическая модель поведения точечных дефектов и атомов ГПД вблизи краевой дислокации в условиях низкотемпературного облучения UO2.

  2. Проведено аналитическое исследование задачи об устойчивости пространственно-однородных распределений точечных и протяженных дефектов кристаллической структуры UO2. Получены оценки и параметрические зависимости для временного и пространственного масштабов неустойчивости.

  1. Определены условия формирования газовых пузырьков разного размера вблизи краевых дислокаций в облучаемом ИОг-топливе.

  2. Развиты расчетно-теоретические модели, описывающие ускоренный выход ГПД из иОг-топлива в переходных режимах: модели роста зерна во внутриреакторных условиях и модель дрейфа газовых пузырьков в градиенте температуры.

  3. Разработаны расчетно-теоретические модели, описывающие перенос теплоносителя и радионуклидов под оболочкой твэла в условиях проведения пенального КТО.

  4. Создан расчетный код РТОП-КГО, моделирующий вынос активности из дефектного твэла при проведении пенального КТО.

Научная и практическая значимость работы:

  1. Разработанные модели микроструктурных изменений U02 позволяют повысить предсказательную способность интегральных топливных кодов и целенаправленно проводить разработку новых видов топлива для достижения требуемых свойств в условиях облучения.

  2. Развитые модели пороговых условий формирования рим-структуры углубляют понимание основных механизмов, ответственных за начало реструктуризации. Разработанные численные методы могут эффективно применяться для моделирования кинетики точечных и протяженных дефектов в облучаемых материалах.

  3. На основе созданного кода РТОП-КГО обоснована методика КТО на остановленном реакторе с циклированием давления, которая обладает повышенной чувствительностью по сравнению с имеющимися методиками пенального КТО и дает возможность оценивать эффективный гидравлический диаметр дефекта в оболочке твэла. Методика внедрена на все российские АЭС с энергоблоками типа ВВЭР и включена в руководящие документы для персонала атомных станций.

Достоверность результатов, полученных в диссертационной работе, подтверждается сравнением расчетов с экспериментальными данными. Модели

микроструктурных изменений в топливе и выхода ГПД в переходных режимах верифицированы на реакторных экспериментах. Код РТОП-КГО верифицирован на экспериментах на стенде ПЕНАЛ, результаты его применения на АЭС подтверждаются послереакторными исследованиями облученных ТВС. Проведено сравнение результатов расчетов с аналитическими тестами, и обоснована сходимость использованных численных схем. Программный код РТОП-КГО аттестован в Федеральной службе по экологическому, технологическому и атомному надзору РФ, получен аттестационный паспорт программного средства № 221 от 21.02.2007.

На защиту выносятся следующие основные положения:

  1. Разработан численный метод, который позволяет находить распределения точечных дефектов и атомов ГПД вблизи краевой дислокации в UO2 для условий низкотемпературного облучения.

  2. Формирование пространственно-неоднородных распределений точечных дефектов и атомов ГПД вблизи дислокации может определять пороговые условия формирования рим-структуры.

  3. Развитые модели роста зерен и ускоренного выхода ГПД хорошо описывают поведение и02-топлива с крупным зерном в условиях переходных режимов.

  4. Созданный расчетный код РТОП-КГО решает задачу переноса жидкости и растворенных радионуклидов под оболочкой дефектного твэла и определения кинетики выноса активности из негерметичного твэла при пенальном КГО.

Апробация работы. Результаты работы докладывались и обсуждались на 6й, 7й, 8й, 9й международных конференциях "International Conference on WWER Fuel Performance, Modelling and Experimental Support" в Болгарии (2005, 2007, 2009, 2011 гг); на конференциях серии Top Fuel: "Water Reactor Fuel Performance Meeting" (Япония, 2005 г), "International Meeting on LWR Fuel Performance" (Испания, 2006 г, США, 2010 г); на IX Российской конференции по реакторному материаловедению (г. Димитровград, 14-18 сентября 2009 г); на

международном семинаре "NXO International workshop: Radiation Effect and Self-Recovery in Materials" (Япония, 2004 г); на российской научно-технической конференции ОАО «ТВЭЛ» (ОАО ВНИИНМ, 2010 г); на российской межотраслевой научно-технической конференции «Исследовательскому комплексу ИВВ-2М - 45 лет» (Заречный, 2011 г); на российском семинаре «Теория и многоуровневое моделирование дефектов, явлений и свойств материалов ядерной техники - ТММ-2008» (ОАО ВНИИНМ, 2008 г); на российском семинаре «Физика радиационных повреждений материалов атомной техники» (Обнинск, 2004, 2005, 2006, 2009, 2010 гг); семинаре «Физическое моделирование изменения свойств реакторных материалов в номинальных и аварийных условиях» (Димитровград, 2006, 2009 гг; Троицк, 2005 г).

Публикации. Материалы, вошедшие в диссертацию, опубликованы в 12 печатных работах, из них 5 статей в рецензируемых журналах, 7 докладов, опубликованных в сборниках трудов конференций.

Личный вклад автора состоит в разработке, реализации и сравнении с экспериментами расчетно-теоретических моделей поведения точечных дефектов и газовых продуктов деления в облучаемом ИОг-топливе (в условиях формирования рим-структуры и в условиях переходных режимов). Автором разработан модуль конвективно-диффузионного переноса и растворения радионуклидов, а также гидравлический модуль (последний совместно с Афанасьевой Е.Ю.) кода РТОП-КГО. Автор проводил верификацию разработанных расчетно-теоретических моделей и кода РТОП-КГО в целом.

Структура и объем диссертации. Настоящая диссертация состоит из введения, четырех глав, заключения, списка цитируемой литературы. Работа включает в себя 144 страницы, 52 иллюстрации, 5 таблиц и 163 цитирования литературы. Во введении излагаются предпосылки, послужившие выбору темы диссертации, цель проведенного исследования, формулируются научная новизна и практическая значимость представленной работы, положения, выносимые на защиту, список публикаций и личный вклад автора. В первой главе излагаются основные представления, опубликованные в литературе, и использован-

ные в настоящей работе. Во второй главе моделируются пороговые условия формирования рим-структуры в облучаемом ІЮг-топливе, для этого численно решается задача о кинетике точечных дефектов и распределении ГПД вблизи дислокации. Полученные результаты позволяют проанализировать модели неустойчивости Киношита и формирования крупных пересжатых пузырьков в топливе. В третьей главе описаны расчетные модели ускоренного выхода ГПД из иОг-топлива в переходных режимах облучения и приведены результаты их применения для условий экспериментов. В четвертой главе излагаются физические и численные модели кода РТОП-КГО, которые описывают массоперенос теплоносителя внутри дефектного твэла, конвективно-диффузионный перенос и растворение радионуклидов. Приведены результаты численных тестов и верификации кода РТОП-КГО на экспериментах, а также примеры его применения.

Похожие диссертации на Развитие моделей поведения ядерного топлива в условиях повышенного выгорания, переходных режимов и при пенальном контроле герметичности оболочек твэлов