Введение к работе
Решение задач нейтронной кинетики реакторов с учетом локальных изменений нейтронно-физических характеристик является одной из наиболее сложных проблем моделирования работы реакторных установок различного типа и назначения. При решении таких задач необходимо иметь эффективные методы решения систем линейных алгебраических уравнений большой размерности с разреженными матрицами коэффициентов.
Один из таких методов решения систем линейных разностных уравнений - метод неполной факторизации (МНФ) - был впервые предложен Н. И. Булеевым в 1959 году и положил начало серии итерационных схем, эффективных в определенных классах задач. В последующие годы МНФ интенсивно развивался и стал одним из основных инструментов решения пространственно-временных задач в различных приложениях, в том числе в задачах расчета атомных реакторов. В развитие этих методов автором диссертации были разработаны новые схемы и испытаны различные варианты МНФ в применении к аппроксимации групповых уравнений диффузии нейтронов системами конечно-разностных уравнений: сверхнеявная схема с периферийной компенсацией итерируемых членов, схема с мерцающим параметром, модификация схемы Шнайдера-Зедана, явная схема в качестве предобусловливателя для метода сопряженных градиентов; неявные и комбинированные схемы. Автором диссертации разработаны программы, реализующие предложенные схемы, и выполнены сравнительные численные исследования их сходимости.
Из числа приложений с использованием МНФ в диссертацию включены два: комплекс программ WIMS-ВОЛНА для расчета нейтронных полей реакторов на тепловых нейтронах типа ВВЭР в (hex, z) -геометрии и комплекс программ GVA (GRIF-SM, VOLNA, ARAMAKO) для расчета быстротекущих процессов в реакторах на быстрых нейтронах типа БН. Алгоритмы и программы нейтронно-физического расчета в этих комплексах разработаны автором диссертации. С помощью первого комплекса программ выполнялись реперные и прогнозные расчеты кампаний различных блоков реакторов ВВЭР-1000 применительно к проблеме деформаций тепловыделяющих сборок (ТВС) в активных зонах в процессе эксплуатации топлива и создания ТВС нового поколения ТВС-2 и ТВС-2М. С помощью второго комплекса были просчитаны быстрые переходные процессы в реакторе типа БН-800, вызванные несанкционированным движением стержней регулирования.
Актуальность работы. Работы по созданию новых эффективных численных алгоритмов для решения различных задач математической физики всегда были и остаются актуальными задачами вычислительной математики. Схема практического решения задачи пространственно-временного расчета реакторов с учетом локальных изменений нейтронно-физических характеристик активной зоны заключается в сведении исходной задачи к задачам, которые могут быть эффективно решены различными методами теории аппроксимации и линейной алгебры. В частности, задача, успешное и эффективное решение которой определяет в большой степени точность и скорость решения исходной задачи, - это решение системы разностных уравнений большого порядка с разреженной матрицей коэффициентов, часто обладающей плохой обусловленностью. Поэтому важным и актуальным является развитие методов решения плохо обусловленных систем линейных уравнений с разреженными матрицами.
Появляющиеся в практике реакторной эксплуатации новые сложные актуальные задачи требуют своего решения. К таким задачам относятся расчет нейтронно-физических характеристик реакторов типа ВВЭР с учетом деформации ТВС в активной зоне реактора в процессе его эксплуатации под воздействием неоднородных тепловых и нейтронных полей и расчет быстротекущих процессов в реакторах на быстрых нейтронах типа БН.
Среди работ команды специалистов, решавших техническую задачу термомеханической стабильности ТВС в составе активных зон ВВЭР-1000 и разработки новой геометрически стабильной при длительной эксплуатации конструкции ТВС нового поколения (ТВС-2 и ТВС-2М), расчеты локальных нейтронных полей и энерговыделения с учетом изменяющейся геометрии активной зоны и водо-урановых соотношений имели самую высокую актуальность.
Пространственно-временной расчет быстрых переходных процессов основан на решении нестационарного уравнения реактора квазистатическим методом, который позволяет выделить два временных масштаба: мелкий - для расчета быстроменяющегося амплитудного фактора (мощности реактора) и крупный - для расчета форм-функции (пространственных распределений групповых потоков нейтронов). Этот метод позволяет выполнить эффективный и экономичный пространственно-временной расчет быстрых переходных процессов в реакторе типа БН, особенно актуальный для анализа начальных стадий их развития.
Цели работы.
-
Разработать новые эффективные варианты метода неполной факторизации для решения алгебраических систем уравнений, являющихся разностными аналогами уравнений эллиптического типа в (hex, z) –геометрии.
-
Создать библиотеку подпрограмм для решения алгебраических систем уравнений на основе метода неполной факторизации.
-
Разработать алгоритмы и программы нейтронно-физического расчета для расчета кампаний реакторов ВВЭР с использованием новых эффективных схем метода неполной факторизации; рассчитать пространственные нейтронно-физические характеристики в течение кампании реактора для различных блоков АЭС с различными загрузками и схемами перегрузок топлива с учетом формоизменения ТВС в процессе эксплуатации для обеспечения термомеханических расчетов активных зон ВВЭР и разработки топливных кассет нового типа.
-
Разработать алгоритмы и программы нестационарного нейтронно-физического расчета переходных процессов в реакторах на примере БН-800 с использованием новых эффективных схем метода неполной факторизации; выполнить пространственно-временные расчетные исследования нейтронно-физических характеристик активной зоны реактора типа БН-800 при моделировании таких процессов, как несанкционированное извлечение стержней регулирования, в совместном теплогидравлическом и нейтронно-физическом расчёте.
Научная новизна результатов диссертации.
Разработаны эффективные варианты МНФ с периферийной компенсацией итерируемых членов для решения уравнений диффузионного типа: сверхнеявная схема, схема с мерцающим параметром, модификация схемы Шнайдера-Зедана, явная схема в качестве предобусловливателя для метода сопряженных градиентов; неявные и комбинированные схемы.
Предложен новый формализм описания МНФ для решения систем разностных уравнений, аппроксимирующих уравнения эллиптического типа, с произвольной нумерацией узлов разностной сетки.
Создана библиотека подпрограмм IFML для решения систем линейных алгебраических уравнений на основе МНФ.
Разработана трехмерная программа ВОЛНА расчета нейтронной кинетики реактора в многогрупповом диффузионном квазистационарном приближении с учетом формоизменения ТВС в составе комплекса программ WIMS-ВОЛНА и выполнены расчеты кампаний реакторов ВВЭР-1000 со смешанными загрузками и различными схемами перегрузок в обеспечение термомеханических расчетов активных зон ВВЭР.
Разработана трехмерная программа VOLNA нестационарного расчета реактора в квазистатическом приближении с учетом теплового расширения активной зоны в составе комплекса программ GVA совместного нейтронно-физического и теплогидравлического расчета реакторов типа БН-800 и выполнены расчеты переходных процессов, обусловленных движением группы стержней.
Достоверность полученных результатов. Универсальность и высокая эффективность разработанных вариантов МНФ, особенно комбинированных схем, подтверждается численными сравнительными исследованиями и практическими приложениями. Достоверность результатов нейтронно-физических расчетов подтверждается хорошим согласием с расчетами тестовых задач по другим программам. Достоверность выводов диссертации подтверждается практикой проведения расчетов, результатами разработки и внедрения топливных кассет нового поколения на АЭС России, конструирование которых опиралось на результаты расчетов нейтронно-физических характеристик активных зон ВВЭР, результатами расчетов активных зон реакторов типа БН-800.
Научная ценность работы заключается в разработке новых эффективных схем МНФ и их программной реализации, что имеет существенное значение в области численных методов решения систем алгебраических уравнений с плохообусловленными матрицами. Эти методы нашли применение в решении практических задач нейтронной кинетики.
Практическая ценность разработанных эффективных методов решения плохо обусловленных систем линейных алгебраических уравнений большой размерности с разреженными матрицами коэффициентов и созданной на их основе библиотеки подпрограмм IFML состоит в применимости этих подпрограмм для решения широкого круга практических задач математической физики. Практическая ценность разработанных комплексов программ нейтронно-физического расчета заключается в большом количестве конкретных рекомендаций и выводов, сделанных по результатам расчетов по этим программам, и принятых проектно-конструкторских решений при разработке и внедрении нового топлива.
Автор выносит на защиту:
Новые схемы, алгоритмы и программные реализации различных вариантов МНФ с периферийной компенсацией итерируемых членов и новые варианты комбинированных схем.
Алгоритмы и программы решения систем трехмерных разностных уравнений диффузионного типа в (hex, z) – геометрии с использованием нового формализма описания МНФ для произвольной нумерации узлов разностной сетки.
Библиотеку подпрограмм неполной факторизации IFML, предназначенных для решения разностных систем двумерных и трехмерных уравнений эллиптического типа.
Алгоритм и программу ВОЛНА многогруппового нейтронно-физического расчета кампаний реакторов ВВЭР с учетом формоизменения ТВС в процессе эксплуатации в комплексе программ WIMS-ВОЛНА.
Комплекс параметрических и поддерживающих расчетов кампаний с различными загрузками в обеспечение термомеханических расчетов активных зон ВВЭР-1000 и в обоснование внедрения на АЭС нового топлива.
Алгоритм и программу VOLNA нестационарного многогруппового нейтронно-физического расчета быстрых переходных процессов в реакторе типа БН-800 в квазистатическом приближении с учетом теплового расширения активной зоны для комплекса программ GVA совместного нейтронно-физического и теплогидравлического расчета.
Личный вклад автора заключается в разработке новых явных и неявных комбинированных схем метода неполной факторизации с периферийной компенсацией итерируемых членов, обладающих более высокой эффективностью при решении систем линейных алгебраических уравнений с плохообусловленными матрицами по сравнению со схемами Булеева, Гинкина, Шнайдера-Зедана. Алгоритмы на основе этих схем реализованы в расчетных программах-решателях, которые в свою очередь были применены в алгоритмах и программах ВОЛНА и VOLNA, также написанных автором. Практические расчеты автор выполнял лично.
Апробация работы. Основные положения и результаты диссертационной работы докладывались на Всесоюзном совещании по динамике реакторов (г.Гатчина, 1990), на 13-ом Международном конгрессе по вычислительной и прикладной математике (г. Дублин, Ирландия, 1991), на VI Российской конференции по радиационной защите ядерных установок (г.Обнинск, 1994), на 9 международном совещании по безопасности ядерных реакторов (г.Москва, 1995), на семинарах «Нейтроника-97, -98», (г.Обнинск, 1997, 1998), на школе-семинаре МИФИ «Интегрированные математические модели и программные комплексы в ядерной энергетике» (г.Москва, 1998), на семинаре «Консультативная встреча специалистов IAEA по проблеме быстрых реакторов» (г.Обнинск, 1998), на международном семинаре “Деформация топливных сборок PWR и ВВЭР”, (г. Ржеж, Чехия, 1998), на международном семинаре «Анализ безопасности атомных станций с реакторами типа ВВЭР и РБМК» (г. Обнинск, 1998), на 4-ом международном конгрессе по прикладной математике (г. Эдинбург, Шотландия, 1999), на международной конференции «Математические идеи П.Л.Чебышева и их приложение к современным проблемам естествознания» (г. Обнинск, 2002), на Техническом комитете МАГАТЭ «Structural behaviour of fuel assemblies for water cooled reactors» (г.Кадараш, Франция, 2004).
Основное содержание диссертации изложено в шести публикациях в отечественных и международных журналах и сборниках трудов конференций, пяти препринтах, трудах отраслевых и международных семинаров, сборниках работ организаций и 58 научно-технических отчетах.
Структура и объем работы. Диссертация состоит из введения, 3 глав, заключения и выводов. Общий объем диссертации – 157 страниц, в том числе 51 рисунок и 31 таблица, список использованных источников содержит 47 наименований на 5 страницах.