Электронная библиотека диссертаций и авторефератов России
dslib.net
Библиотека диссертаций
Навигация
Каталог диссертаций России
Англоязычные диссертации
Диссертации бесплатно
Предстоящие защиты
Рецензии на автореферат
Отчисления авторам
Мой кабинет
Заказы: забрать, оплатить
Мой личный счет
Мой профиль
Мой авторский профиль
Подписки на рассылки



расширенный поиск

Разработка и исследование численных схем высокого порядка точности для решения уравнений газовой динамики на неструктурированных сетках Ляпунов Сергей Владимирович

Диссертация, - 480 руб., доставка 1-3 часа, с 10-19 (Московское время), кроме воскресенья

Автореферат - бесплатно, доставка 10 минут, круглосуточно, без выходных и праздников

Ляпунов Сергей Владимирович. Разработка и исследование численных схем высокого порядка точности для решения уравнений газовой динамики на неструктурированных сетках : диссертация ... доктора физико-математических наук : 05.13.18 / Ляпунов Сергей Владимирович; [Место защиты: Воен.-воздуш. акад. им. Н.Е. Жуковского].- Москва, 2008.- 127 с.: ил. РГБ ОД, 71 09-1/27

Введение к работе

А.С.Ненашев

Актуальность проблемы. В настоящее время все больший объем информации о течениях жидкостей и газов и силах, действующих на движущиеся в них тела и ограничивающие поверхности, получается с использованием методов вычислительной аэродинамики – численных методов решения систем уравнений Эйлера и Навье-Стокса. Применение этих методов позволяет сократить объем промышленных экспериментальных исследований, лучше понять физические особенности течений и, в ряде случаев, позволяет получить информацию, которую крайне сложно, а порой и невозможно, получить в эксперименте. Главенствующее место среди численных методов занимают сеточные методы, основанные на дискретной аппроксимации уравнений газовой динамики.

Основным требованием, предъявляемым к таким сеточным методам, является, прежде всего, обеспечение высокой точности (малой численной ошибки) получаемых результатов при минимально необходимых ресурсах ЭВМ (времени и объеме памяти). Кроме того, желательно максимально автоматизировать процесс генерации вычислительной сетки, обеспечить возможность генерации сетки вокруг объектов сложной геометрии, обеспечить точное описание («разрешить») особенности течений (скачки уплотнения, пограничные слои, отрывные зоны и т.п.), устойчивую сходимость к решению для максимально возможного числа случаев обтекания (робастность).

Перспективными подходами к построению численных методов, удовлетворяющих перечисленным требованиям, являются применение неструктурированных вычислительных сеток, численных схем высокого порядка точности, адаптация сетки и численной схемы к решению. В настоящей диссертационной работе предложены и исследованы методы адаптации неструктурированных сеток и локальной адаптации порядка точности численного метода к решению на базе метода конечного элемента Галеркина с разрывными функциями. Впервые этот метод был предложен в работе (Reed, Hill 1973) для решения уравнения переноса нейтронов. Дальнейшие многочисленные исследования были посвящены анализу математических аспектов метода, таких как скорость сходимости и пр. (LeSaint, Raviart, 1974, Johnson, Pitkaranta, 1986), а также развитию метода (Cockburn, Shu, 1989, Cockburn, Lin, Shu, 1989, Cockburn, Hou, Shu, 1990, Cockburn, Shu, 1998), (Bassi, Rebay 1997), (Warburton, Lomtev, Kirby, Karniadakis 1998, Lomtev, Karniadakis 1997).

Преимущества метода Галеркина с разрывными функциями заключаются в следующем.

Данный метод легко адаптируется к неструктурированным сеткам и, следовательно, удобен для работы с областями сложной геометрии.

Порядок точности метода зависит от максимальной степени полиномов базисных функций, использующихся для аппроксимации численного решения. Метод может быть сформулирован формальным образом для произвольного порядка точности на гладких решениях путем расширения подпространства базисных функций и увеличения максимального порядка полиномов.

Метод обладает большой гибкостью, поскольку порядок базисных функций может меняться от элемента к элементу, что важно с точки зрения адаптации метода к решению.

Таким образом, актуальность работы определяется потребностью создания высокоэффективных численных методов решения уравнений газовой динамики, позволяющих получать решение задач обтекания конфигураций сложной геометрии с высокой точностью при минимальных затратах памяти и времени работы ЭВМ.

Практическая значимость работы состоит в разработке принципов адаптации неструктурированных сеток и порядка точности численной схемы к решению. Проведены методические исследования, включающие решения модельных задач, уравнений Эйлера, Навье-Стокса и Рейнольдса, демонстрирующие эффективность данных подходов с точки зрения повышения точности численных решений. Разработана научно-методическая основа для реализации предложенных подходов в промышленных программах решения уравнений газовой динамики.

Цель диссертационной работы состоит в теоретической и методической разработке методов ускорения расчета и повышения точности результатов численного решения уравнений газовой динамики – уравнений Эйлера (невязкий случай) и уравнений Навье-Стокса и Рейнольдса (вязкий случай) путем адаптации не только неструктурированной расчетной сетки, но и локального порядка точности численной схемы. Данные подходы основаны на модификации метода Галеркина с разрывными функциями (DG – Discontinuous Galerkin в англоязычной литературе), который является комбинацией метода конечного элемента и метода конечного объема типа метода Годунова. Особое внимание уделяется анализу порядка точности получаемых схем, выявлению их преимуществ по сравнению со стандартными схемами типа Годунова. Подробно рассмотрены возможности, которые обеспечивает схема DG с точки зрения адаптации к решению на неструктурированных сетках. Приведены результаты исследований на примерах одномерных и двумерных задач. Выбор этих задач в значительной степени обусловлен интересом к анализу порядка ошибки численного решения, что требует знания точного решения.

Общая методика выполнения исследований состоит в

аналитической формулировке численной схемы решения различных законов сохранения, включая уравнения Эйлера, Навье-Стокса и Рейнольдса на базе варианта метода конечного элемента – метода Галеркина с разрывными функциями, обеспечивающего произвольный порядок точности численной схемы,

разработке вычислительных программ, реализующих этот численный метод для различных задач с использованием неструктурированных разностных сеток и процедур адаптации сеток к решению,

анализе порядков точности метода на примерах тестовых задач и решений уравнений газовой динамики,

выявлении положительных особенностей метода с точки зрения адаптации схемы к решению путем адаптации вычислительной сетки (h-refinement) или порядка точности схемы (p-refinement).

Научная новизна работы заключается в разработке и исследовании новых подходов к созданию эффективных численных схем решения уравнений газовой динамики, в том числе на неструктурированных сетках, обеспечивающих высокую точность решения при умеренных затратах ресурсов ЭВМ и широкие возможности адаптации к решению, не только путем адаптации сетки, но и путем локального изменения порядка точности численной схемы.

Автор защищает следующие результаты:

  1. Принципы построения численных схем решения законов сохранения, в частности, уравнений газовой динамики (уравнений Эйлера, Навье-Стокса и Рейнольдса), обеспечивающих уменьшение времени расчета и повышение точности результатов, по сравнению с классическими методами типа метода Годунова, путем различных способов адаптации неструктурированной сетки и локального порядка точности разностной схемы к решению на базе численной схемы конечного элемента – метода Галеркина с разрывными функциями.

  2. Результаты исследований предлагаемых подходов к адаптации, представляющих научно-методический базис для реализации разработанных подходов в промышленных программах решения уравнений газовой динамики.

Практическая ценность и реализация работы. Предлагаемые в диссертации способы повышения эффективности численных методов решения уравнений газовой динамики апробированы на модельных задачах и доведены до стадии начала промышленной реализации. Ряд подходов реализован в виде вычислительных программ, которые используются для проведения расчетных исследований обтекания различных элементов самолетов (крыловые профили, взлетно-посадочная механизация) при выполнении НИР ЦАГИ по контрактам с Роспромом и при проведении инициативных исследований.

Апробация работы. Методы прошли тщательное тестирование путем сравнения результатов расчетов с имеющимися точными решениями и результатами других авторов. Результаты проведенных исследований позволили сделать ряд выводов относительно возможности реализации высокого порядка точности на гладких решениях, особенностей применения рассматриваемого подхода для тел с криволинейной границей, возможностей адаптации схемы к решению путем модификации расчетной сетки, локального изменения порядка схемы или модификации системы базисных функций. Автор полагает, что рассмотренные подходы могут послужить основой для разработки эффективных численных методов и промышленных программ расчета вязких трехмерных течений около тел сложной геометрии.

Основные результаты проведенного автором исследования содержатся в 31 публикациях, опубликованных в российских научных изданиях и за рубежом, а также докладывались на международных и российских научно-технических конференциях, в том числе, на 6-ой международной конференции по генерации сеток для вычислительной аэродинамики (1998), 16-м Конгрессе Международной ассоциации математического и компьютерного моделирования IMACS (2000), 3-ей Европейской конференции по механике жидкости EUROMECH (1997), 5-ой Российско-Китайской конференции по аэродинамике и механике полета (1997), Международных Конгрессах по авиационным наукам ICAS (1990, 1992, 1996), школах-семинарах «Аэродинамика летательных аппаратов (1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007), Международной конференции молодых ученых и специалистов «Современные проблемы аэрокосмической науки и техники (2000), франко-российском семинаре ONERA-ЦАГИ (2002) и др.

В данную диссертацию включены исследования, поддержанные РФФИ (Проекты № 98-01-00032-а, 1998, №00-01-00070-а, 2000, №02-01-00124-а, 2002, №03-01-00236-а, 2003, №06-01-00283-а, 2006).

Объем работы. Диссертация состоит из введения, пяти глав, заключения и списка литературы, включающего 93 наименования. Общий объем – 127 страниц.

Похожие диссертации на Разработка и исследование численных схем высокого порядка точности для решения уравнений газовой динамики на неструктурированных сетках