Введение к работе
Актуальность темы. На современном этапе развития науки и техники возрастает потребность в изготовлении высококачественных структур и приборов твердотельной электроники, отвечающих требованиям миниатюризации с одновременным улучшением их параметров. Возможности традиционных методов полупроводникового производства с этой точки зрения ограничены. В связи с этим, стремление исследователей к совершенствованию существующих технологических приемов и разработке принципиально новых, отличных от известных ранее способов производства полупроводниковых структур остается актуальным направлением развития полупроводниковой технологии.
Одним из важнейших технологических процессов формирования структур твердотельной электроники является получение высококачественных и воспроизводимых по электрофизическим параметрам полупроводниковых слоев. Метод термомиграции и один из ее вариантов зонная перекристаллизация градиентом температуры (ЗПГТ), весьма эффективны для реализации этой задачи. Высокая равновесность и изотермичность процесса, относительная простота устранения испарения легколетучих компонентов и ряд других полезных особенностей существенно расширили область практического применения методов термомиграции.
Известные исследования и разработки физико-технологических основ получения слоев полупроводниковых материалов методом термомиграции выявили существенную зависимость качества и, в конечном счете, параметров получаемых структур от условий роста кристалла. Так, периодическое изменение температуры ЗПГТ, даже на непродолжительное время по сравнению с протяженностью всего технологического процесса, может изменить мгновенную скорость движения зоны, повлиять на стабильность процесса и на концентрацию примеси в выращенном слое. В публикациях посвященных этому вопросу отмечается, что естественным источником подобной нестационарности как правило является недостаточно термостабилизированная нагревательная система. Было показано, что температурные колебания в ходе перекристаллизации при определенных условиях приводят к существенному увеличению средней скорости процесса и позволяют достичь другие важные для практики результаты. Однако достоверная, однозначно интерпретируемая информация о влиянии температурной нестационарности на кинетику и результаты перекристаллизации при термомиграции может быть получена лишь при использовании контролируемого процесса. Эти работы показали также, что исследование влияния нестационарных тепловых условий встречает значительные трудности как в области теории, так и эксперимента. В теоретической части недостаточно развито моделирование процесса ЗПГТ в нестационарных условиях и, в частности, оно не доведено до машинного эксперимента, позволяющего существенно снизить объем натурных экспериментов. Кроме того, теория ограничена учетом только одного варианта
создания пульсирующего температурного поля, который в значительной степени осложнен тепловой инертностью оборудования. Этот же недостаток представляется основным и для проведенных ранее экспериментов. Поэтому актуальным является не только проведение новых, но и проверка уже выполненных исследований в условиях, свободных от указанных недостатков. В частности, поэтому в качестве модельного объекта исследований целесообразно выбрать одну из хорошо исследованных ранее систем. Такой системой является Si-металл. Эта система важна также и как наиболее перспективная для практического использования ввиду ее высокой технологичности.
Диссертация является частью плановых работ выполняемых в рамках НИОКР по заданию ряда НИИ и НПО на хоздоговорной основе и планах НИР по основным направлениям НИР ЮРГТУ (НПИ) на 1990-99г.
Целью данной работы является разработка и исследование физико-технологических основ получения слоев кремния термомиграцией в нестационарных условиях. Для ее реализации необходимо решить следующие задачи:
-
разработать физические модели и методику компьютерного моделирования процесса термомиграции в переменном тепловом поле;
-
в рамках разработанных моделей провести исследование основных закономерностей кинетики нестационарной термомиграции в системах на основе кремния для двух методов создания температурных колебаний в жидкой фазе:
пульсирующим тепловым излучением;
переменным электрическим током, пропускаемым через образец;
-
разработать оборудование и методику проведения экспериментальных исследований кинетики термомиграции при указанных способах создания температурных колебаний в объеме зоны;
-
провести экспериментальное исследование кинетики процесса миграции в поле температурного градиента и выявить особенности метода, характерные для теплового и токового способов создания температурных колебаний;
5) определить области практического применения нестационарной
жидкофазной эпитаксии, основанной на методе термомиграции.
Научная новизна
-
Предложены и проанализированы модели термомиграции, описывающие процесс массопереноса ростового вещества в переменном тепловом поле, создаваемом в жидкой зоне тепловым и токовым способами.
-
Проведено теоретическое и экспериментальное исследование кинетики роста слоев полупроводникового материала методом нестационарной термомиграции в системах Si-Al и Si-Au. Получены зависимости скорости миграции жидкой зоны от параметров нестационарных условий (амплитуды и частоты температурных колебаний при тепловом способе создания нестационарных условий, а также от частоты и амплитуды переменного электри-
ческого тока при токовом способе). Установлены основные закономерности процесса термомиграции в нестационарных условиях для нормального, дислокационного и зародышевого механизмов межфазных процессов.
-
Установлено, что при создании нестационарных условий переменным электрическим током, пропускаемым через жидкую фазу, основное влияние на изменение скорости перекристаллизации оказывают тепловые эффекты, возникающие в монокристалле (тепло Джоуля и эффект Пельтье). Электроперенос переменным электрическим током не приводит к изменению средней скорости движения зоны.
-
Предложена методика проведения процесса термомиграции в нестационарных тепловых условиях, обнаружен и изучен эффект снижения величины порогового размера жидкой зоны, характерной для стационарной реализации метода.
-
Разработана методика осуществления компьютерного прогнозирования процессов перекристаллизации в нестационарных температурных условиях на основе моделей термомиграции.
Практическая значимость
Проведенные исследования процесса термомиграции в нестационарных условиях представляют научный и практический интерес для организаций и научно-исследовательских лабораторий, специализирующихся в области технологии полупроводников и материалов электронной техники. Направлениями практического применения результатов диссертации являются:
-
Определение технологических условий проведения процесса термомиграции на основе численного моделирования и компьютерного эксперимента, снижающих нежелательное воздействие на воспроизводимость результатов перекристаллизации температурных флуктуации, носящих случайный характер.
-
Определение условий проведения процесса нестационарной термомиграции, обеспечивающих возможность контролируемого влияния периодического теплового поля на результаты технологического процесса.
-
Повышение эффективности метода термомиграции за счет снижения энергоемкости процесса при сохранении скорости движения жидкой фазы в приемлемом для производства диапазоне.
-
Возможность получения полупроводниковых структур, отвечающих требованию миниатюризации, за счет использования малых размеров зон раствора-расплава.
-
Создание термического оборудования для получения слоев полупроводникового материала с возможностью автоматического поддержания необходимых технологических режимов, непосредственно влияющих на электрофизические параметры полупроводниковых слоев и структур на их основе.
Основные положения выносимые на зашиту
1. Модели термомиграции в нестационарных условиях применимы для анализа кинетики процесса получения эпитаксиальных слоев методом термомиграции в двойных системах типа кремний-металл.
-
Преднамеренно создаваемые температурные колебания в расплаве зоны приводят к возрастанию скорости термомиграции по сравнению со стационарным случаем. Масштаб эффекта определяется способом создания нестационарных условий и тем, какой механизм межфазных процессов проявляется на границах с жидкой фазой.
-
При термомиграции жидкой фазы в монокристалле кремния, в случае создания периодического теплового поля токовым способом, величина средней скорости возрастает в результате выделения джоулева тепла, а также в результате выделения или поглощения на границах зоны тепла Пельтье. Электроперенос переменным электрическим током не приводит к изменению средней скорости движения зоны.
-
Создание температурных колебаний в расплаве зоны с частотой 5-100Гц позволяет существенно снизить величину порогового размера зоны ( Кр, характерной для стационарной термомиграции.
5. Компьютерный эксперимент применим для оптимизации параметров
термического оборудования и осуществления модернизации технологии полу
чения слоев кремния методом термомиграции в нестационарных условиях.
Апробация работы и публикации
Основные результаты диссертации доложены и обсуждены на Всероссийской конференции с международным участием по актуальным проблемам твердотельной электроники и микроэлектроники (ПЭМ-96) в 1996 и в 1997 гг. (п. Дивноморское), научных конференциях и сессиях ЮРГТУ (НПИ), научных семинарах кафедры физики и научно-исследовательских лабораториях 1995-1999 гг. и Российской конференции по материаловедению и физико-химическим основам технологий получения легированных кристаллов кремния «Кремний-2000» в 2000 г. (г.Москва, МИСиС).
Публикации. По результатам работы опубликовано 12 печатных работ, из них восемь статей.
Структура и объем диссертации. Диссертация состоит из введения, пяти глав, общих выводов, списка литературы из У l