Введение к работе
Актуальность проблемы
Следствием длительного пребывания в условиях невесомости и гипокинезии является снижение функциональных возможностей мышечной системы и, в первую очередь, постуральных мышц, в частности камбаловидной. Именно камбаловидная мышца (m. soleus) несет основную нагрузку в поддержании вертикальной позы и противодействии земной гравитации, и, следовательно, при гравитационной разгрузке изменения в ней наиболее выражены (Fitts R. et al., 2000). Показано, что в условиях реальной или моделируемой гравитационной разгрузки имеет место развитие атрофических изменений в волокнах скелетных мышц млекопитающих и человека (Козловская И.Б. и др., 1984). Так, происходит снижение сократительных характеристик мышечных волокон (МВ) и их жёсткости (McDonald K.S., Fitts R.H., 1995; Toursel T. et al., 2002; Widrick J. et al., 1999; Ogneva I.V., 2010), отмечается уменьшение площади поперечного сечения мышечных волокон (Оганов В.С. и др., 1982; Riley D. et al., 2002) и трансформация миозинового фенотипа в быструю сторону (Caiozzo V. et al., 1994; Edgerton V. et al., 1995). Кроме того, наблюдаются изменения содержания сократительных белков (Chopard A. et al., 2001) и объема миофибриллярного аппарата (Kozlovskaya I.B. et al., 1996; Desplanches D. et al., 1987). Данные изменения приводят к снижению работоспособности постуральных мышц, что значительно осложняет осуществление длительных космических полётов и течение реабилитационного периода после их завершения.
Ряд последствий микрогравитации, имеющих место в камбаловидной мышце, может быть связан с изменениями энергетического обмена, существенным аспектом которого является клеточное дыхание. Интенсивность клеточного дыхания способна оказывать влияние на параметры внутриклеточного энергообмена, в частности, на динамику содержания таких энергетических субстратов, как гликоген и триглицериды (Baldwin K. et al.,1993; Widrick J. et al., 1999; Grichko V. et al., 2000; Тавитова М.Г. и др., 2011).
Изменение уровня запасов внутриклеточных субстратов в условиях микрогравитации может быть связано как с трансформацией процесса клеточного дыхания, который зависит от активности ферментов цикла Кребса, состояния цепи переноса электронов и проницаемости мембраны митохондрий для АДФ, так и с модуляцией энергопотребления в условиях сниженной сократительной активности мышцы. Литературные данные, свидетельствующие об активности ферментов цикла Кребса в условиях микрогравитации, являются противоречивыми (Буравкова Л.Б., Маилян Э.С., 1988; Chi M.M. et al, 1992; Ohira Y. et al., 1992; Bigard A. et al., 1998; Shenkman B.S. et al., 2000). Однако о влиянии активности ферментов цикла Кребса на процесс клеточного дыхания можно говорить только в том случае, когда состояние дыхательной цепи остаётся интактным. Имеются данные о снижении активности цитохромоксидазы в волокнах камбаловидной мышцы крысы (Ohira Y. et al., 1994; Oishi Y. et al., 2008). Кроме того, клеточное дыхание зависит от проницаемости митохондриальной мембраны, в регуляции которой, по-видимому, важную роль играют цитоскелетные белки (Saks V. et al., 1995). Возможно, одним из таких белков является десмин, что было показано в опытах с нуль-десминовыми мышами (Kay L. et. el., 1997; Milner D. et al., 2000). Было обнаружено, что у нокаутных по гену десмина мышей интенсивность поглощения кислорода волокнами камбаловидной мышцы и константа диссоциации АДФ достоверно снижены по сравнению с теми же показателями у обычных мышей (Milner D. et al., 2000). Также известно, что митохондрии находятся в тесной взаимосвязи с филаментами цитоскелетного белка десмина, который определяет их локализацию в клетке (Georgatos S.D., Maison C., 1996; Milner D. et al., 2000; Capetanaki Y. et al., 2007) и, возможно, участвует в регуляции транспорта АДФ и креатина через наружную мембрану митохондрий (Saks V. et al., 1995). Вследствие того, что десмин оказывает влияние на распределение и функции митохондрий, можно предположить, что изменения в содержании данного белка в условиях гравитационной разгрузки и после восстановления могут коррелировать с динамикой параметров клеточного дыхания.
С другой стороны, помимо митохондрий, филаменты десмина тесно связаны с Z-диском, одним из основных структурных белков которого является альфа-актинин-2 (Sanger J.M., Sanger J.W., 2008). Поэтому можно предположить, что содержание альфа-актинина-2 в МВ косвенно влияет на работу митохондрий, а, следовательно, и на процесс клеточного дыхания. В то же время, на ранних этапах гравитационной разгрузки происходит снижение содержания десмина (Enns D.L. et al., 2007; Ogneva I.V., 2010), связанное, по-видимому, с активацией в этих условиях кальций-зависимых протеаз – кальпаинов (Enns D.L. et al., 2007), что и обусловливает деградацию белка. При этом субстратом кальпаиновой системы протеолиза является не только десмин, но и альфа-актинин-2 (Akiyama N. et al., 2006).
В настоящее время особенности клеточного дыхания и факторы, влияющие на них, в мышечных волокнах в условиях микрогравитации и последующего восстановления изучены недостаточно. Следовательно, исследование параметров клеточного дыхания во взаимосвязи с содержанием цитоскелетных белков и энергосубстратов в волокнах постуральных мышц является актуальным направлением в области современной гравитационной физиологии и клеточной биофизики.
В связи с вышеизложенным, целью работы являлось определение динамики клеточного дыхания во взаимосвязи с содержанием цитоскелетных белков и энергетических субстратов в волокнах камбаловидной мышцы крысы в условиях гравитационной разгрузки и последующего восстановления.
Задачи работы:
1.Определить основные параметры клеточного дыхания в волокнах камбаловидной мышцы как в динамике гравитационной разгрузки, так и последующего периода реадаптации.
2.Оценить динамику содержания десмина в мышечных волокнах камбаловидной мышцы в условиях гравитационной разгрузки и после восстановления.
3.Изучить изменение содержания альфа-актинина-2 в волокнах камбаловидной мышцы в условиях гравитационной разгрузки и после восстановления.
4.Определить содержание гликогена и триглицеридов в быстрых и медленных волокнах камбаловидной мышцы крысы в период 3 и 7- суточной реадаптации после 14-суточной гравитационной разгрузки.
Научная новизна работы:
-показано снижение параметров клеточного дыхания скинированных волокон камбаловидной мышцы крысы на ранних сроках гравитационной разгрузки, а также после 3-суточного восстановления, при этом после 7 суток реадаптации произошло восстановление скорости клеточного дыхания;
-показано снижение относительного содержания десмина после 3-суточого периода восстановления, а также восстановление данного белка к 7 суткам периода реадаптации;
-показано снижение содержания альфа-актинина-2 в волокнах камбаловидной мышцы крысы после 3,7,14 суток гравитационной разгрузки, а также 3-суточного восстановления; восстановление содержания альфа-актинина-2 до контрольного уровня после 7 суток реадаптации;
-показано увеличение содержания гликогена в быстрых волокнах на 3-и сутки реадаптации после гравитационной разгрузки, накопление гликогена в быстрых и медленных волокнах после 7-суточного восстановления;
-показано снижение содержания триглицеридов после 3-суточного восстановления в быстрых волокнах относительно показателей контрольной группы и в медленных волокнах относительно показателей в группе животных после вывешивания.
Научная и практическая значимость работы
Результаты, полученные в рамках данной работы, расширяют научные представления об особенностях процесса клеточного дыхания как в условиях гравитационной разгрузки, так и в последующий период реадаптации. В ходе работы были выявлены возможные факторы и механизмы, влияющие на динамику параметров клеточного дыхания, а также содержание цитоскелетных белков и энергетических субстратов. В настоящем исследовании была дана оценка изменениям, происходящим в камбаловидной мышце не только в условиях гравитационной разгрузки, но и в период реадаптации, что особенно важно для понимания процессов, имеющих место при реабилитации космонавтов после приземления на Землю.
Полученные в данной работе результаты могут быть использованы для разработки новых методов, которые позволят снизить нежелательное действие невесомости на постуральные мышцы космонавтов, совершающих длительные космические полёты.
Основные положения, выносимые на защиту:
1. Моделируемая гравитационная разгрузка приводит к достоверному снижению скорости клеточного дыхания волокон камбаловидной мышцы крысы, которая достигает минимума после 7 суток разгрузки, при этом наблюдается изменение содержания цитоскелетных белков (десмина и альфа-актинина-2).
2. Результатом восстановления в течение 3 суток является снижение скорости клеточного дыхания волокон камбаловидной мышцы. Реадаптация в течение 7 суток приводит к восстановлению параметров клеточного дыхания. В период восстановления в волокнах камбаловидной мышцы отмечается изменение содержания цитоскелетных белков (десмина и альфа-актинина-2) и энергетических субстратов (гликогена и триглицеридов).
3. В условиях гравитационной разгрузки и в последующий период реадаптации интенсивность клеточного дыхания коррелирует с относительным содержанием десмина.
Публикации. Результаты диссертации изложены в 12 публикациях в научных журналах и сборниках тезисов конференций, из них 3 в журналах, рекомендованных ВАК.
Апробация работы. Основные результаты работы были доложены на VI Всероссийской с международным участием школе-конференции по физиологии мышц и мышечной деятельности «Системные и клеточные механизмы в физиологии двигательной системы» (Москва, 2011); на XVIII Международной конференции студентов, аспирантов и молодых ученых «Ломоносов-2011» (Москва, 2011); на X и XI Конференциях молодых учёных, специалистов и студентов, посвящённых Дню космонавтики (Москва, 2011, 2012); на XV Международной Пущинской школе-конференции молодых ученых «Биология – наука XXI века» (Пущино, 2011); на 40th European Muscle Conference (Берлин, Германия, 2011); на Космическом форуме 2011, посвящённом 50-летию полёта в космос Ю.А. Гагарина (Москва, 2011), на XIV международном совещании и VII школе по эволюционной физиологии (Санкт-Петербург, 2011).
Диссертация апробирована на заседании секции учёного совета ГНЦ РФ – ИМБП РАН «Космическая физиология и биология» (протокол № 2 от 06.03.2012г.).
Работа выполнена при поддержке программы фундаментальных исследований ГНЦ РФ – ИМБП РАН и гранта РФФИ 10-04-00106-а.
Структура диссертации. Работа включает в себя введение, обзор литературы, описание материалов и методов исследования, изложение результатов и их обсуждение, а также выводы. Диссертационная работа изложена на 114 страницах, содержит 32 рисунка, 6 таблиц и список цитируемой литературы из 188 источников.