Электронная библиотека диссертаций и авторефератов России
dslib.net
Библиотека диссертаций
Навигация
Каталог диссертаций России
Англоязычные диссертации
Диссертации бесплатно
Предстоящие защиты
Рецензии на автореферат
Отчисления авторам
Мой кабинет
Заказы: забрать, оплатить
Мой личный счет
Мой профиль
Мой авторский профиль
Подписки на рассылки



расширенный поиск

Разработка конструктивно-технологических методов высокоселективного синтеза ориентированных массивов углеродных нанотрубок на планарных подложках Павлов, Александр Александрович

Разработка конструктивно-технологических методов высокоселективного синтеза ориентированных массивов углеродных нанотрубок на планарных подложках
<
Разработка конструктивно-технологических методов высокоселективного синтеза ориентированных массивов углеродных нанотрубок на планарных подложках Разработка конструктивно-технологических методов высокоселективного синтеза ориентированных массивов углеродных нанотрубок на планарных подложках Разработка конструктивно-технологических методов высокоселективного синтеза ориентированных массивов углеродных нанотрубок на планарных подложках Разработка конструктивно-технологических методов высокоселективного синтеза ориентированных массивов углеродных нанотрубок на планарных подложках Разработка конструктивно-технологических методов высокоселективного синтеза ориентированных массивов углеродных нанотрубок на планарных подложках
>

Диссертация, - 480 руб., доставка 1-3 часа, с 10-19 (Московское время), кроме воскресенья

Автореферат - бесплатно, доставка 10 минут, круглосуточно, без выходных и праздников

Павлов, Александр Александрович. Разработка конструктивно-технологических методов высокоселективного синтеза ориентированных массивов углеродных нанотрубок на планарных подложках : диссертация ... кандидата технических наук : 05.27.01 / Павлов Александр Александрович; [Место защиты: Моск. гос. ин-т электронной техники].- Москва, 2010.- 149 с.: ил. РГБ ОД, 61 11-5/553

Введение к работе

Актуальность

Современная электроника и микросистемная техника позволяют решить большой спектр прикладных задач в различных областях науки и техники. Благодаря разработке новых плазменных и газофазных процессов обработки, достигнуты существенные успехи в области устройств преобразования различных величин в широком спектре детектирующих систем. Однако в свете появления принципиально новых материалов на основе углеродных структур, таких как углеродные нанотрубки (УНТ) и графены, значительно превосходящих по некоторым своим свойствам материалы, традиционно применяемые при изготовлении микросистем, остро стоит проблема оптимизации процессов их получения и совмещения с уже разработанными конструктивно-технологическими методами производства.

Благодаря уникальным электрическим, магнитным, оптическим и механическим свойствам УНТ вызывают огромный интерес как перспективные кандидаты в качестве базовых элементов нанотехнологии и наноэлектроники. В последнее десятилетие наблюдается скачок патентной активности в области синтеза УНТ и путей их практического применения. Предложено множество вариантов использования УНТ, а именно: в качестве перспективных материалов для электронно-полевых эмиттеров автоэмиссионных дисплеев, молекулярных транзисторов, зондов атомно-силовых микроскопов, для хранения газовой и электрохимической энергии батарей и топливных элементов, носителей катализаторов, молекулярно-фильтрационных мембран, наполнителей сверхпрочных композитов, для сенсоров деформации, сверхмощных конденсаторов, квантовых резисторов, длинных баллистических проводников, нанопинцетов, искусственных мышц и других функциональных приборов и устройств нового поколения. В первую десятку владельцев патентов в области синтеза и применения УНТ входят такие компании, как NEC Corporation, Samsung SDI, Agere System Guardian Corp., EI DuPont De Nemours and Co., Industrial Tech. Res. Institute, University of California, Advanced Micro Devices, IBM, Toshiba, Motorola, Fujitsu. Таким образом, углеродные нанотрубки могут сыграть заметную роль в эволюции информационных систем.

Углеродные нанотрубки имеют большое разнообразие форм и свойств. Они могут быть одностенными или многостенными

(однослойными или многослойными), прямыми или спиральными, длинными и короткими, иметь спектр электронных состояний, соответствующий металлам или полупроводникам и т.д. Нанотрубки необыкновенно прочные, как на растяжение, так и на изгиб и обладают свойствами по перестройке собственной структуры под действием повышенных механических напряжений. УНТ способны проводить ток очень высокой плотности до 109 А/см2; менять свои свойства при присоединении (адсорбции) других атомов и молекул; испускать электроны со своих концов при низких температурах (холодная электронная эмиссия), испускать свет и т.д. Поэтому во всем мире ведутся интенсивные исследования свойств УНТ, что ведет к расширению области их практического применения.

Перспективы создания на основе УНТ нового поколения наноэлектронных устройств непосредственно связаны с определенными успехами в области разработки технологии управляемого и воспроизводимого синтеза унифицированных УНТ, а также с возможностью контроля их ориентации и локализации в определенной области подложки. К настоящему моменту разработано несколько основополагающих методов синтеза УНТ (дуговой разряд, лазерная абляция, химическое осаждение из парогазовой фазы (CVD) и др.), однако, как правило, полученный материал неоднороден и содержит примеси различной природы (углеродные волокна, остатки катализатора, аморфный углерод, фуллерены и другие наночастицы), а сами нанотрубки спутаны, что не позволяет получить отдельные УНТ, пригодные для использования в качестве элементов функциональных устройств. Следовательно, для большинства упомянутых выше приложений требуется разработка технологии синтеза унифицированных ориентированных массивов УНТ с минимальным количеством примесей и дефектов.

Наиболее перспективным направлением исследования является создание гибридных структур, в которых углеродные нанотрубки выращены на кремниевых интегральных схемах. В этом случае достижения современной микроэлектроники дополняются преимуществами УНТ. Получаются новые уникальные интегральные схемы, в которых дополнительно появляются возможности использования полевой эмиссии, встраивания приемников и излучателей СВЧ диапазона, а также разнообразных магнитных, химических преобразователей и биосенсоров. Тем самым, возникает новое направление - углеродная наноэлектроника. Углеродная

наноэлектроника - это сочетание в одном кристалле структур из кремния и углерода, с целью расширения возможностей обычных планарных интегральных схем и совмещения уникальных свойств углеродных структур с возможностями цифровой обработки сигналов. Создание таких наноэлементов является одним из актуальных направлений развития современной микро- и наносистемнои техники и электроники.

Синтез углеродных нанотрубок на кремниевых планарных структурах требует решения важнейших технологических проблем -самоформирования и самосовмещения массивов и отдельно стоящих УНТ с необходимыми областями функциональных подложек и элементов структуры, т.е. высокоселективный синтез УНТ. Селективный рост означает, что трубки должны развиваться на одном из веществ, составляющих результат применения планарной технологии. Это может быть кремний, двуокись кремния либо другое вещество, нанесенное на планарную структуру. Данное вещество должно быть локализовано, а рост УНТ должен происходить только на нем, не переходя границ локализации. В этом направлении существуют эксперименты различных авторов, предлагаются некоторые модели, которые, однако, не отражают всех особенностей селективного роста. Сложность разработки вопроса селективного синтеза иллюстрирует тот факт, что, несмотря на многочисленность исследовательских групп, активно работающих в данной области, довести до промышленного уровня технологию синтеза унифицированных УНТ удалось только ограниченному их числу.

Целью настоящей диссертационной работы является разработка конструктивно-технологических методов высокоселективного синтеза углеродных наноструктур с контролируемыми параметрами на основе процессов химического осаждения из парогазовой фазы с использованием различных типов катализатора для применения в приборах и устройствах микро- и наносистемнои техники и электроники.

Основные задачи:

  1. Определение основных технологических параметров синтеза УНТ, влияющих на их свойства и характеристики.

  2. Разработка физико-химической модели основополагающих этапов роста массивов УНТ.

  1. Построение модели селективного синтеза массивов УНТ.

  2. Разработка конструктивно-технологических методов высокоселективного синтеза углеродных наноструктур.

Научная новизна

  1. Установлены определяющие технологические параметры контролируемого синтеза УНТ посредством химического осаждения из парогазовой фазы.

  2. Построена адекватная физико-химическая модель формирования кластеров катализатора роста УНТ, как этапа играющего определяющую роль при синтезе нанотрубок и непосредственно влияющего на распределение размеров структурных элементов в результате синтеза.

  3. На основе проведенных исследований и расчетов предлагается оригинальная технология синтеза, позволяющая контролировать преобладающий диаметр получаемых нанотрубок.

  4. Разработана физико-химическая модель селективного синтеза УНТ, отражающая как процессы, протекающие в капле катализатора роста, так и характеризующая скорость приращения длины нанотрубки.

  5. Разработаны и реализованы конструктивно-технологические условия процессов получения селективного синтеза массивов углеродных нанотрубок на подложках различных материалов микроэлектроники.

Практическая значимость

  1. Разработанная физико-химическая модель и методики синтеза позволяют контролировать распределение размеров углеродных нанотрубок по диаметру посредством изменения основных технологических параметров.

  2. Разработанные методики высокоселективного синтеза массивов УНТ позволяют обеспечить высокую точность воспроизведения размеров топологических элементов не литографическими методами.

  3. Разработанные методики синтеза массивов УНТ позволяют обеспечить возможность внедрения процесса высокоселективного синтеза ориентированных массивов УНТ в технологическую цепочку производства компонентов микро- и наносистемной техники и микроэлектроники.

  4. На основе полученных результатов исследований разработаны конструктивно-технологические ограничения, необходимые для

проведения анализа возможности использования УНТ в качестве функциональных элементов и покрытий в ряде существующих изделий нано- и микросистемной техники и электроники.

5. Материалы диссертации использованы при выполнении:

НИР «Разработка конструктивно-технологических основ для формирования наноструктурированных материалов, применимых в технологии межсоединений современных СБИС и элементов вакуумной электроники» (ГК№ 02.740.11.5110 (Шифр «2009-1.5-000-010-052»).

6. Разработанные в рамках диссертационной работы методики
высокоселективного синтеза ориентированных массивов углеродных
нанотрубок на планарных подложках внедрены и реализованы в ООО
НИИ «Технология» и ГНЦ РФ ФГУ НИК «Технологический центр»
МИЭТ.

На защиту выносятся следующие положения

I. Физико-химическая модель формирование капель

инжектируемого катализатора для синтеза УНТ из газофазной среды, основанная на анализе гомогенных и гетерогенных процессов протекающих при образовании кластеров. В модели учтен коэффициент поверхностного натяжения, оказывающий значительное влияние на распределение размеров кластеров.

П. Физико-химическая модель, описывающая механизм селективного синтеза УНТ. В модели учитывается зависимость концентрации углерода и карбида железа в катализаторе от эффективного коэффициента поверхностного натяжения расплава, который определяется типом подложки и размером кластера катализатора.

  1. Методика, основанная на экспериментальных данных и разработанной физико-химической модели формирования кластеров катализатора, позволяющая контролировать распределение размеров кластеров в зависимости от параметров синтеза.

  2. Методики получения высокоселективного синтеза массивов УНТ на подложках различных материалов микроэлектроники, основывающиеся на теоретическом и экспериментальном подборе концентраций углеводорода и катализатора, соотношениях коэффициентов поверхностного натяжения материалов и температурных параметров синтеза, так же позволяющих контролировать характеристики получаемых массивов УНТ.

  3. Методика улучшения характеристик массивов УНТ, основанная на обнаруженной зависимости сопротивления массивов от длительности плазменной обработки, за счет которой удаляются аморфные включения и графитизированный слой углерода.

Апробация работы

Основные результаты работы доложены автором на следующих конференциях и семинарах:

  1. X Международная конференция «Опто-, наноэлектроника, нанотехнологии и микросистемы», г. Ульяновск, 2008.

  2. Школа молодых ученых «Физические проблемы наноэлектроники, нанотехнологии и микросистем», г. Ульяновск, 2008.

  3. Российская конференция с международным участием «Технические и программные средства систем управления, контроля и измерения» (УКИ-08) (институт РАН им. Трапезникова), г. Москва, 2008.

  4. Первый Международный форум по нанотехнологиям: Rusnanotech'08, г. Москва, 2008.

  5. 15-я Всероссийская межвузовская научно-техническая конференция студентов и аспирантов "Микроэлектроника и информатика - 2008", г. Москва, 2008.

  6. 16-я Всероссийская межвузовская научно-техническая конференция студентов и аспирантов "Микроэлектроника и информатика - 2009", г. Москва, 2009.

  7. XI Международная конференция «Опто-, наноэлектроника, нанотехнологии и микросистемы», г. Ульяновск, 2009.

  8. Школа молодых ученых «Физические проблемы наноэлектроники, нанотехнологии и микросистем», г. Ульяновск, 2009.

  9. Юбилейная научно-техническая конференция посвященная 50-ти летию в/ч 68240, г. Железнодорожный, 2009.

  10. Международная конференция «Инноватика - 2009», г. Махачкала, 2009.

  11. Второй Международный форум по нанотехнологиям: Rusnanotech'09, г. Москва, 2009.

  12. Международная научно-техническая конференция «Технологии микро- и наноэлектроники и микросистемной техники», г. Москва, 2009.

13.17-я Всероссийская межвузовская научно-техническая конференция студентов и аспирантов "Микроэлектроника и информатика - 2010", г. Москва, 2010.

14. Школа молодых ученых «Современные проблемы наноэлектроники, нанотехнологии, микро- и наносистем», г. Ульяновск, 2010.

Публикации

По теме диссертации опубликовано 17 печатных работ, в том числе 6 статей, из них 3 статьи в журналах из списка ВАК.

Структура диссертации

Диссертация состоит из введения, четырех глав, основных результатов и выводов и списка литературы; содержит 147 страниц машинописного текста, включая 13. таблиц, 66 рисунков и списка литературы из 176 наименований.

Похожие диссертации на Разработка конструктивно-технологических методов высокоселективного синтеза ориентированных массивов углеродных нанотрубок на планарных подложках