Электронная библиотека диссертаций и авторефератов России
dslib.net
Библиотека диссертаций
Навигация
Каталог диссертаций России
Англоязычные диссертации
Диссертации бесплатно
Предстоящие защиты
Рецензии на автореферат
Отчисления авторам
Мой кабинет
Заказы: забрать, оплатить
Мой личный счет
Мой профиль
Мой авторский профиль
Подписки на рассылки



расширенный поиск

Интеллектуальная система моделирования коллективного принятия решений для сложной транспортно-логистической задачи Листопад, Сергей Викторович

Диссертация, - 480 руб., доставка 1-3 часа, с 10-19 (Московское время), кроме воскресенья

Автореферат - бесплатно, доставка 10 минут, круглосуточно, без выходных и праздников

Листопад, Сергей Викторович. Интеллектуальная система моделирования коллективного принятия решений для сложной транспортно-логистической задачи : диссертация ... кандидата технических наук : 05.13.17 / Листопад Сергей Викторович; [Место защиты: Ин-т проблем информатики].- Калининград, 2012.- 151 с.: ил. РГБ ОД, 61 12-5/1726

Введение к работе

Актуальность работы. Увеличивающееся в обществе разнообразие информации и, как следствие, усложняющиеся задачи создания, накопления и обработки информации неизбежно приводят к ошибкам принятия решений, науко- и трудоемкости автоматизированного решения проблем. В то время как люди научились решать сложные задачи коллективно в самоорганизующихся системах поддержки принятия решений (СППР), информационные интеллектуальные системы с парадигмой компьютерного моделирования процессов и явлений в памяти одного человека все менее и менее релевантны этим целям. Методы и модели информатики для автоматизированного решения задачи «в принципе» в научной лаборатории оказались не пригодными в программных приложениях на практике. Одна из фундаментальных проблем состоит в том, что, с одной стороны, коллективы способны анализировать, редуцировать сложность проблемы и вырабатывать релевантный ситуации новый метод решения, комбинируя под руководством лица, принимающего решения (ЛПР), линии рассуждений экспертов, с другой стороны, в информатике: 1) компьютеры остаются вычислителем для одного из известных инструментариев; 2) оценки сложности вычислений известны, а разработка моделей не изучается математикой.

По аналогии с экспертными системами, позволившими компьютеру рассуждать не хуже одного человека, актуально научить ЭВМ работать в условиях сложных задач не хуже коллектива специалистов. Д.А. Поспелов выделил задачу моделирования коллективного принятия решений как одну из десяти «горячих точек» в исследованиях по искусственному интеллекту. Автоматизированные системы, моделирующие коллективное принятие решений, смогут комбинировать различные виды знаний для решения сложной задачи, самостоятельно меняя алгоритм своего функционирования.

Теоретические основы комбинированных моделей для машинного синтеза новых динамично изменяемых методов решения задач рассматривались в работах В.И. Городецкого, М.С. Грушинского, Н.А. Земцова, В.Д. Ильина, Л.А. Калиниченко, К.А. Неусыпина, С.А. Ступникова, В.Б. Тарасова (много-агентные системы), А.В. Гаврилова, А.В. Колесникова, Н.Г. Ярушкиной (гибридные интеллектуальные системы), А.Н. Борисова, Г.В. Рыбиной, И.Б. Фоминых, А.И. Эрлих (интегрированные экспертные системы) и др. Наиболее цитируемые зарубежные авторы в этой области - H.-D. Burkhard, Y. Demazeau, В. Fley, М. Florian, М.-Р. Gleizes, F. Hillebrandt, D. Hinck, N.R. Jennings, A. Karageorgos, A.C. Rocha Costa, M. Schillo, G.D.M. Serugendo, M. Wooldridge, С Zhang, Z. Zhang.

Тем не менее, вопросы сложности разработки информационных моделей задач с разнородными знаниями, построения новых методов с достоинствами гибридных и многоагентных систем, а также создания и исследования функционирования программных продуктов, имитирующих поведение коллектива людей, решающего сложные задачи в условиях разнообразия информации, исследованы недостаточно.

В этой связи можно сформулировать актуальную научно-техническую задачу повышения эффективности разработки информационных интеллектуальных систем и качества результатов автоматизированного решения сложных задач в условиях разнообразия информации, что снижает временные затраты на разработку системы, а также повышает эффективность системы управления за счет сокращения потерь от ошибочных и нерелевантных сложности ситуации индивидуальных решений.

Выполнение работы связано с плановыми исследованиями Калининградского филиала ИПИ РАН, проводимыми в рамках Программы фундаментальных научных исследований государственных академий наук на 2008 - 2012 годы, утвержденной распоряжением Правительства Российской Федерации от 27.02.2008 г. № 233-р (направления 27,28).

Цель диссертационной работы состоит в том, чтобы для решения поставленной научно-технической задачи: 1) получить новые знания о сложности моделирования задач; 2) разработать и исследовать метод, модели, алгоритмы интегрированного, гибридно-многоагентного представления знаний о сложной задаче; 3) создать и исследовать программный продукт (ПП), имитирующий поведение коллектива людей, вырабатывающих и применяющих метод решения сложной задачи над различными линиями рассуждений экспертов.

Задачи исследования:

  1. Выявление объективных параметров классификации задач по признаку сложности моделирования и разработка меры сложности моделирования задач;

  2. Исследование явлений и процессов самоорганизации в СППР;

  3. Разработка метода моделирования процессов самоорганизации в системах поддержки принятия решений с использованием гибридных интеллектуальных многоагентных систем (ГиИМАС);

  4. Извлечение знаний о поведении ЛПР по управлению коллективом в СППР с использованием компьютерного моделирования;

  5. Разработка и исследование программной реализации ГиИМАС с самоорганизацией и методики для решения сложной транспортно-логистической задачи (СТЛЗ).

Данные задачи были решены в ходе работы.

Объекты исследования: СППР и процессы самоорганизации в коллективах людей, принимающих решения; класс сложных для моделирования задач; шесть классов методов: аналитические, статистические, экспертных систем, нечетких систем, искусственных нейронных сетей, генетических алгоритмов; новый класс гибридных интеллектуальных многоагентных систем.

Содержание диссертационного исследования соответствует специальности 05.13.17 «Теоретические основы информатики» (пункты 1, 2, 4, 8 паспорта специальности ВАК)

Методическая база исследований. Для разработки меры сложности задач использовались: дискретная математика, теория множеств, теория графов, модели «неоднородная задача» и «однородная задача», информационный язык «ресурс-свойство-действие-отношение» А.В. Колесникова. Для разработки метода моделирования процессов самоорганизации в СППР с использованием ГиИМАС применялись теория нечетких множеств, методы нечеткой логики. При разработке ПП «Транспортный маршрутизатор ТРАНСМАР» использовались алгебраические уравнения, алгоритм колонии муравьев, продукционная экспертная система с рассуждениями в прямом направлении, алгоритм нечетких рассуждений Мамдани и метод Монте-Карло. Применялось объектно-ориентированное, агентно-ориентированное, модульное программирование. Методика основана на проблемно-структурной методологии гибридных интеллектуальных систем (ГиИС).

Научная новизна состоит в том, что:

  1. Предложена классификация задач по сложности моделирования и разработана мера сложности моделирования задач;

  2. Исследованы процессы и разработана модель самоорганизации в системах поддержки принятия решений на основе анализа целей участников;

  3. Разработан метод моделирования самоорганизации в СППР с использованием гибридной интеллектуальной многоагентной системы;

  4. Получены новые знания о поведении лица, принимающего решения, по управлению коллективом СППР методом компьютерного моделирования;

  5. Разработана программная реализация гибридной интеллектуальной многоагентной системы с самоорганизацией для решения сложной транспорт-но-логистической задачи - ПП «Транспортный маршрутизатор ТРАНСМАР» версии 1.1 - и методика его применения.

Достоверность научных положений, рекомендаций и выводов. Обоснованность научных положений, рекомендаций и выводов определяется корректным использованием математических методов и моделей. Достоверность положений и выводов подтверждена результатами лабораторных исследований

и экспериментальными данными, полученными при внедрении ГиИМАС. Определения, классификация задач, мера сложности моделирования апробированы на конференциях и в научных публикациях.

Практическая ценность диссертационной работы состоит в том, что разработанный программный продукт «Транспортный маршрутизатор ТРАНСМАР» версии 1.1 может использоваться при создании компьютерных интеллектуальных систем поддержки принятия решений, что снижает временные затраты на проект у разработчика и повышает эффективность системы управления, сокращая потери от ошибочных и нерелевантных решений.

Разработанная мера сложности моделирования задачи может использоваться для анализа результатов предпроектного обследования объекта автоматизации и разработки технического задания на компьютерные системы поддержки принятия решений, что позволяет рассчитать релевантные оценки архитектуры ГиИМАС, времени и ресурсов на реализацию проекта.

Реализация результатов исследования. Метод моделирования самоорганизации в СППР с использованием ГиИМАС реализован, что подтверждается свидетельствами о регистрации трех программ для ЭВМ. Мера оценки сложности моделирования и ПП ТРАНСМАР использовались: 1) в лабораторных экспериментах с целью моделирования самоорганизации в СППР и оценки качества коллективных решений в сравнении с индивидуальными; 2) при разработке компьютерных систем поддержки принятия решений (КСППР) для транспорт-но-логистических предприятий ЗАО «Совтрансавто-Калининград» и ООО «Балтреммаш», выполняющих международные и региональные перевозки. Использование подтверждается двумя актами о внедрении результатов диссертационной работы.

Результаты планируется использовать в проектах интеллектуального муниципалитета и ситуационных центров в Калининградской области.

Положения, выносимые на защиту. На защиту выносятся следующие полученные автором результаты:

  1. Мера оценки сложности моделирования, основанная на объективных параметрах разнообразия и неоднородности информации: «класс переменных» и «класс отношений», позволяющая вычислить границу сложных задач, определить требования к структурным свойствам КСППР, количественно оценить релевантность моделей оригиналам;

  2. Модель ГиИМАС с самоорганизацией, релевантно отображающая в памяти ЭВМ как разнообразие знаний агентов-экспертов, так и их информационные взаимодействия между собой и агентом-ЛПР в ходе анализа, редукции и поиска решения сложной задачи;

  1. Метод моделирования самоорганизации СППР на основе анализа целей агентов для синтеза релевантного ситуации принятия решений инструмента;

  2. Модель информационной структуры, реализующей в ЭВМ интегрированное представление знаний, - ГиИМАС - и процесс ее функционирования, отображающий самоорганизацию в СППР;

  3. Методика применения ГиИМАС для решения СТЛЗ с целью прокладки маршрутов транспортных средств, выполняющих доставку грузов клиентам логистической компании.

Апробация работы. Основные положения диссертационной работы обсуждались на Международной научной конференции «Образование, наука и инженерная деятельность в социокультурном пространстве эксклавного региона: история, актуальные проблемы, перспективы развития» (Калининград, 2007), Международной научной конференции Computer Days - 2009 (Каунас, Литва, 2009); 7-й Международной конференции «Инновации в науке и образовании» (Калининград, 2009), Международных научных конференциях IT 2010 и IT 2011 (Каунас, Литва, 2010, 2011), III - V Всероссийских конференциях студентов, аспирантов и молодых учёных «Искусственный интеллект: философия, методология, инновации» (Москва, 2009, 2010, 2011), IX Международной конференции, посвященной 45-летию Балтийской государственной академии рыбопромыслового флота «Морская индустрия, транспорт и логистика в странах региона Балтийского моря: новые вызовы и ответы» и др. Работа отмечена премией в рамках Второй школы молодых ученых ИПИ РАН в 2011 г.

Публикации. По тематике диссертационной работы имеется 18 печатных публикаций общим объемом 17,6 печатных листа, из них 7,1 авторских (в изданиях, рекомендованных ВАК, - 2 публикации общим объемом 1,5 печатных листа, из них 1,1 авторских), в том числе одна коллективная монография и три свидетельства о регистрации программ для ЭВМ в Федеральной службе по интеллектуальной собственности, патентам и товарным знакам (Роспатент).

Объем и структура работы. Диссертация состоит из введения, пяти глав, 17 таблиц, 35 рисунков, заключения, списка литературы, содержащего 170 наименований, и двух приложений. Объем основного текста работы - 145 страниц.

Похожие диссертации на Интеллектуальная система моделирования коллективного принятия решений для сложной транспортно-логистической задачи